ФИЗИКА

УДК 538.915;544.032.52

© В. А. Кныр, Н. А. Хохлов, 2009

ОПИСАНИЕ ЭЛЕКТРИЧЕСКИХ СВОЙСТВ ЛИНЕЙНОГО КЛАСТЕРА УГЛЕРОДА *С*₁₀ В РАМКАХ ТЕОРИИ ФУНКЦИОНАЛА ПЛОТНОСТИ

Кныр В. А. – д-р физ.-мат. наук, проф. завкафедрой «Физика», тел.: (4212) 35-83-42; Хохлов Н. А. – д-р физ.-мат. наук, проф. кафедры «Физика», e-mail: Khokhlov@fizika.khstu.ru (ТОГУ)

В рамках теории функционала плотности представлены расчеты геометрической структуры и энергетических характеристик линейного кластера углерода C_{10} . Рассчитаны распределения электронных плотностей ионизированного кластера для различных значений ионизации и соответствующие энергетические и геометрические эффекты. Результаты расчета геометрической структуры для нейтрального кластера C_{10} согласуются с более ранними расчетами. Анализ результатов расчетов для ионов $C_{10}^{\rm Z}$ с

 $Z=\pm 2,\pm 1$ показывает возможность использования подобных ионов в электромеханических наноустройствах.

Ключевые слова: наноструктура, электронная структура, углерод, кластер.

Введение

Кластеры углерода являются наиболее распространенной кластерной структурой во вселенной. Связано это с тем, что углерод является одним из наиболее распространенных химических элементов, а его атомы формируют кластеры легче всех остальных элементов. Кластеры углерода являются перспективными материалами, свойства которых могут быть использованы в ВЕСТНИК ТОГУ. 2009. № 4 (15)

различных наноустройствах. Расчет свойств этих кластеров является хорошим тестом для современных методов квантовой химии. Кластеры углерода легко могут быть получены лазерной абляцией графита [1]. Уже малые углеродные кластеры C_N с N < 24 демонстрируют разнообразие возможных геометрических структур. Для кластеров C_N с $N \le 10$ расчеты предсказывают стабильность линейных и моноцикличных, а для кластеров с N > 10 (примерно до N = 20) расчеты предсказывают стабильность моноцикличных структур [2]. Кластеры большего размера могут иметь структуры более сложных типов (чашеобразные, фуллереноподобные и др.). В настоящей работе представлены результаты теоретического исследования свойств линейного кластера углерода C_{10} в рамках теории функционала плотности [3]. Ранее первопринципные расчеты свойств C_{10} проводились квантовым методом Монте-Карло [4] и другими методами.

1. Техника расчета

Нами были рассчитаны расстояния между ядрами и энергетические характеристики линейного кластера углерода C_{10} . Расчет проводился в рамках теории функционала плотности. В этом подходе используется приближение Борна – Оппенгеймера, в котором ядра, входящие в состав рассматриваемой системы, считаются неподвижными. Посредством итерационной процедуры решается самосогласованная система уравнений Кона-Шэма и восстанавливаются электронная плотность $n(\vec{r})$ и энергия основного состояния исходной многочастичной системы. Расположение ядер затем варьируется до достижения минимума энергии.

Для приведения системы дифференциальных уравнений Кона-Шэма к системе линейных уравнений обычно используется разложение орбиталей по некоторому базису. В частности, для расчета электронной структуры периодических и однородных систем используется плосковолновой базис. Этот базис применим и для локализованных волновых функций, но менее эффективен в этом случае, поскольку требует учета существенно большего числа компонент. В то же время случай локализованных волновых функций представляет значительный научный интерес, т. к. соответствует неоднородным (дефекты) и изолированным системам (молекулы). В этом случае использовались также базисы гауссовских функций и вейвлеты [8]. В случае использования базиса гауссовских функций, как и в случае использования других несистематических базисов, имеются значительные трудности, связанные со сходимостью и стабильностью результатов, что обусловлено с возможным переполнением базиса с ростом числа учитываемых базисных функций. В то же время расчеты показывают эффективность использования базиса вейвлетов, для которого эти проблемы отсутствуют [8]. Таким образом, выбор бази-

са для разложения орбиталей Кона-Шэма имеет существенное значение для расчетов в рамках теории функционала плотности. В нашей работе мы использовали базис волновых функций прямоугольной ямы. Ранее подобный базис не использовался в расчетах. Тем не менее, мы предполагаем его эффективность в случае как периодических и однородных структур, так и неоднородных и изолированных систем. В сущности, это обобщение для плосковолнового базиса, так как в случае ямы нулевой глубины (ширины) мы получаем плосковолновой базис. В то же время, изменяя геометрические параметры и энергетическую глубину ямы, мы можем включить в базис волновые функции с экспоненциальной асимптотикой, что позволяет эффективнее описать неоднородные и изолированные системы.

Настоящие результаты были получены с использованием кода ABINIT, международного общего проекта Université Catholique de Louvain, Corning Incorporated и других сотрудников [5, 6, 7, 8]. Код ABINIT распространяется на условиях открытого лицензионного соглашения GNU, позволяющего копировать, модифицировать и распространять соответствующие программы. Таким образом, в модифицированном нами коде ABINIT для разложения орбиталей Кона-Шэма используется базис волновых функций прямоугольной ямы. Параметры ямы варьировались для достижения лучшей сходимости результатов.

2. Результаты расчетов

Результаты наших расчетов представлены на рисунке и в таблице. В таблице мы сравниваем результаты расчетов геометрической структуры неионизированного кластера с результатами, полученными в работе [4], в целом наши расчеты согласуются ними. Отметим, что многочисленные расчеты подтверждают высокую точность расчетов геометрической структуры в рамках теории функционала плотности [3].

Расчеты длин кластеров *l*, приведенные в таблице, показывают заметную зависимость длины положительно заряженных кластеров от величины заряда, эта зависимость может быть использована в электромеханических наноустройствах.

Наши расчеты показали эффективность использования базиса волновых функций прямоугольной ямы для разложения орбиталей Кона-Шэма. В дальнейшем мы планируем оптимизировать модифицированный нами код ABINIT и использовать его для расчета физических свойств других, более сложных наноструктур.

Геометрическая структура кластера углерода C_{10} , использованная в расчетах.

ВЕСТНИК ТОГУ. 2009. № 4 (15)

Рассчитанные параметры геометрической структуры кластера углерода	C_{10}	, Z
при разных значениях заряда Z		

Z, e	а ₀ , Å	a_l , Å	a2, Å	а ₃ , Å	a4, Å	l, Å	Е, эВ
-2	1,235	1,322	1,240	1,335	1,242	11,448	-3,39
-1	1,255	1,301	1,250	1,306	1,260	11,489	-4,03
0	1,263	1,268	1,261	1,277	1,287	11,514	0
0	1,250	1,279	1,252	1,285	1,273	11,428	
+1	1,287	1,259	1,288	1,269	1,317	11,553	10,67
+2	1,330	1,250	1,334	1,261	1,424	11,868	22,11

Для значения Z=0 в нижней строке приведены результаты работы [4].

Библиографические ссылки

1. K. Shibagaki, T. Kawashima, K. Sasaki and K.i Kadota // Jpn. J. Appl. Phys. 39, 2000.

2. A. Van Orden and R. J. Saykally // Chem. Rev. 98. 1988.

3. В. Кон // УФН 98. 2002. № 3.

4. Y. Shlyakhter, et al // J. Chem. Phys. 110. 1999. № 22.

5. http://www.abinit.org

6. X. Gonze, J.-M. Beuken, R. Caracas, et al // Computational Materials Science 25. 2002.

7. X. Gonze, G.-M. Rignanese, M. Verstraete, et al // Zeit. Kristallogr. 220. 2005.

8. L. Genovese, A. Neelov, S. Goedecker, et all // http://arxiv.org, arXiv:0804.2583.