ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

УДК 538.9

© Е. С. Астапова, С. С. Павлов, 2011

РЕНТГЕНОФАЗОВЫЙ И РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ МОДИФИЦИРОВАННОГО НАНОПОРОШКАМИ МЕТАЛЛОВ ЦЕОЛИТА СЕМЕЙСТВА ПЕНТАСИЛ

Астапова Е. С. – ректор, д-р физ.-мат. наук, проф. кафедры «Физическое материаловедение и лазерные технологии»; Павлов С. С. – асп. кафедры «Физическое материаловедение и лазерные технологии», тел. 8-963-802-52-31, e-mail: pavlovsergeys@gmail.com (АмГУ)

Методами рентгеноструктурного и рентгенофазового анализа изучены структура и фазовый состав образцов синтетического цеолита, модифицированных электровзрывными нанопорошками переходных металлов. Установлено, что исходный образец относится к структурному типу ZSM-5. Обнаружено, что модификация не оказывает существенного влияния на структуру образцов, но изменяет их кристалличность.

Structure of synthetic zeolite samples, modified with electroexplosion nanopowders of transition metals is studied by X-ray diffraction and phase analysis. It was established that the original sample is ZSM-5 zeolite. Our data suggest that modification does not significantly affect the sample structure, but influence the crystallinity.

Ключевые слова: синтетический цеолит, модификация, нанопорошок, рентгеновский анализ.

Введение

Широкое практическое применение синтетических цеолитов в различных отраслях промышленности вызывает потребность в создании их новых видов с улучшенными свойствами, в том числе путем различных модификаций. В настоящее время выделяют три основные разновидности внесения модифицирующей добавки в цеолит: механическое смешение, изоморфное замещение решеточного алюминия на стадии гидротермального синтеза, и пропитка солями [1]. При этом исследователи по-разному решают вопрос о том, где находятся введенные металлы: на внешней поверхности кристаллов, встраиваются в решетку или располагаются внутри микропористой структуры [1].

Существенного улучшения требуемых свойств цеолитов (в частности, каталитических) можно достичь при использовании в качестве модификато-

ров металлических и оксидных наночастиц благодаря особенностям, связанным с их чрезвычайно малыми размерами [2–3]. В литературе появились сведения об эффективном использовании высококремнеземных цеолитов (**ВКЦ**), модифицированных нанопорошками (**НП**) металлов в катализе [4–7]. В то же время практически отсутствуют структурные исследования этих кристаллов.

Цель нашей работы – изучить структурные особенности и фазовый состав образцов **ВКЦ**, модифицированных **НП**, с помощью рентгеноструктурного и рентгенофазового анализа (**РСА** и **РФА**).

Объекты исследования

Образцы высококремнеземного цеолита были синтезированы по методике, подробно изложенной в работах [8–10]. В качестве структурообразующей добавки применялся гексаметилендиамин. Модификаторами служили электровзрывные нанопорошки переходных металлов Ni, Mo, W. Модификация происходила путем смешивания образцов ВКЦ и НП в концентрации от 1 до 10 масс. % в шаровой вибрационной мельнице КМ-1 на воздухе в течение 2 часов. Далее половину образцов прокаливали при 550° C в течение 4 часов для образования оксидной формы нанопорошков (NiO, MoO₃ и WO₃).

Методы исследования

Фазовый состав и структуру образцов изучали на дифрактометре «ДРОН-6» методом Дебая-Шеррера с фокусировкой по Брэггу-Брентано в автоматическом режиме работы прибора с длиной волны $\lambda = 1,5418$ Å, CuK_αизлучением и Ni-фильтром. Образец помещали в кювету, которую закрепляли держателем на гониометре. Горизонтальная и вертикальная щели на трубке равнялись 6 и 2 мм соответственно, щели на детекторе – 10 и 0,1 мм. Катодное напряжение составляло 40 кВ, ток в трубке соответствовал 20 мА, число импульсов было принято 10³ имп/с⁻¹. При съемке осуществлялось одновременное движение приставки и детектора (метод 2 Θ – Θ). Параметры элементарной ячейки Бравэ рассчитаны по квадратичным формам зависимостей, используя метод наименьших квадратов с последующими итерациями. Фазы металлов идентифицированы по международной рентгенометрической картотеке JCPDS.

Для определения степени кристалличности модифицированных образцов измеряли высоты пиков в области $2\theta = 23-25^{\circ}$, и далее по формуле (1) определяли искомую характеристику [10]:

$$k = \frac{\sum_{i}^{i} I_{i1}}{\sum_{i} I_{i2}} \cdot 100\%, \qquad (1)$$

где: k – степень кристалличности, %; I_{i2} – интенсивность пика исследуемого образца, имп/с; I_{i1} – интенсивность пика эталонного образца (в качестве которого использовали немодифицированный ВКЦ), имп/с.

Электронные микрофотографии были получены на растровом электронном микроскопе «JSM-6490 LV» фирмы "Jeol" (Япония) в режиме вторичных электронов.

Результаты и обсуждение

В табл. 1 представлены данные о межплоскостных расстояниях и относительных интенсивностях немодифицированного образца в сравнении с данными, имеющимися в литературе. Элементарная ячейка характеризуется (орто)ромбической сингонией, ее параметры приведены в табл. 2. В продукте кристаллизации была обнаружена небольшая примесь кварца, на что указывает пик с d = 3.345 Å. На основании представленных данных можно заключить, что структура исходного синтезированного образца соответствует структуре цеолита типа ZSM-5 (семейство пентасил, MFI), химический состав которого следующий [10]:

$$xR_2O \cdot (1-x)M_{2/n} \cdot Al_2O_3 \cdot ySiO_2 \cdot zH_2O, \qquad (2)$$

где: R – органический катион; M – катион щелочного или щелочноземельного металла; n – валентность; x, y, z – число молей; 1>x>0; y>5; z = 0-40.

Таблица 1

Межплоскостные расстояния и относительные интенсивности исходного образца цеолита

E	ВКЦ		ZSM-5 [11]		ВКЦ ZSM-5 [11]		5 [11]
d, Å	I _{отн} , %						
11,11	79,0	11,13	68,4	4,267	11,9	4,241	8,9
		11,11	50,3				
10,02	36,2	10,01	31,3	4.095	9,3	4,075	3,0
		9,95	36,8				
6,700	5,5	6,692	6,8	3,852	100,0	3,836	100,0
						3,815	78,7
6,369	12,0	6,346	17,4	3,725	46,1	3,747	31,0
						3,709	47,7
6,007	17,6	5,973	10,9	3,651	37,1	3,640	39,7
5,707	6,6	5,697	10,0	3,345	14,5	3,346	1,2
5,570	10,5	5,563	6,2	3,052	9,3	3,044	11,9
		5,553	5,6				
		5,529	3,5				
5,019	6,0	5,005	2,6	2,984	13,0	2,980	7.4
		4,975	5,6				
4,622	5,0	4,598	8,4	2.488	6,8	2,487	1,9
		4,586	2,1				
4,367	10,0	4,354	4,7	1,988	7,1	1,990	7,5
		4,353	7.1				

С помощью РФА (табл. 3) было установлено, что положения основных дифракционных полос модифицированных образцов не претерпевают значительных изменений, что свидетельствует о стабильности цеолитной структуры.

Таблица 2

Параметры элементарной ячейки синтезированного цеолита

Образец	Параметры элементарной ячейки, Å				
	a±∆a	b±∆b	$c\pm\Delta c$		
ВКЦ	20,094±0,003	19,889±0,002	13,397±0,007		
ZSM-5 [11]	20,022	19,899	13,383		

Таблица 3

Межплоскостные расстояния *d* и относительные интенсивности *I*_{отн} модифицированных поликристаллов

Фаза	V BKII	10 % V	o BKII	10 % M	I BKII*	10 % N
Ψa3a	10 % W-ВКЦ					
7014	I _{отн} , %	0, A	I _{0тн} , %	0, A	I _{отн} , %о	0, A
ZSIVI-	/5,2	11,05	73,0	11,10	/0,3	11,07
3	52,7	9,96	/6,5	10,00	56,8	9,93
_	9,9	6,345	16,3	6,368	16,3	6,343
_	19,4	5,983	25,1	5,985	22,2	5,963
_	14,2	5,556	24,2	5,557	19,5	5,553
	7,9	4,356	6,6	4,364	12,3	4,358
	13,0	4,251	16,7	4,258	14,9	4,247
	100,0	3,845	100,0	3,843	100,0	3,847
	56,9	3,717	38,2	3,731	38,7	3,728
	30,7	3,640	37,8	3,643	22,9	3,641
Кварц			34,9	3,342	18,1	3,342
ZSM-	14,9	3,046	13,0	3,052	13,0	3,042
5	14,9	2,978	15,6	2,984	12,9	2,981
W	32,1	2,522				
MoO ₃			2,6	2,277		
W	84,1	2,259	· · ·	-		
	65,3	2,238				
Мо	· · · · ·		71,7	2,224		
W	73,6	2,062	,	,		
Ni		,			64,2	2,033
					25.0	1.760
WO ₃	2.1	1.673			-) -	
MoO ₂	, ,		3.1	1.670		
Mo			23.3	1.572		
W	4.7	1.458	- 3-	<u> </u>		
W	18.3	1.402				
MoO ₃	- ,-		2.4	1.383		
W	19.0	1.347	_,.	-,		
	21.0	1 292				
Mo	-1,0	-,_>_	44 0	1 284		
W	11.5	1 263	,0	1,201		
Ni	11,0	1,205			97	1 246
W	9.0	1 1 2 9			1,1	1,270
Mo	2,0	1,127	3.5	1 1 1 4		
WIO	13.0	1 102	5,5	1,117		
Ni	15,0	1,102			9.8	1.062
I INI					7.0	1 1/11/2

2 | 9,8 | | Ni * Образец цеолита, модифицированный НП никеля в концентрации 10 %

РЕНТГЕНОФАЗОВЫЙ И РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ МОДИФИЦИРОВАННОГО НАНОПОРОШКАМИ МЕТАЛЛОВ ЦЕОЛИТА СЕМЕЙСТВА ПЕНТАСИЛ

В тоже время, анализ показал, что **абсолютные интенсивности** основных дифракционных максимумов цеолитной фазы после модификации несколько уменьшаются, в связи с чем представляло интерес определить кристалличность изучаемых образцов (рис. 1). Данные по образцам, модифицированным НП в меньшей концентрации, аналогичны данным по исходному ВКЦ, и поэтому не приводятся. Кристалличность 12,6 % WO₃-ВКЦ не рассчитывалась, поскольку в области $2\theta = 23-25^{\circ}$ произошло наложение самых сильных рефлексов фаз ZSM-5 и WO₃.

Рис. 1. Кристалличность модифицированных образцов ВКЦ по данным РСА

Из приведенных данных следует, что кристалличность всех образцов, модифицированных нанопорошками в концентрации 10 масс. % (за исключением 15 % MoO₃-BKЦ), в процессе модификации незначительно падает, что согласуется с имеющимися сведениями в литературе [2, 12], и ранее полученными нами результатами [13]. Так как условия модификации были для всех образцов одинаковы, то различная степень кристалличности (в том числе образца 15 % MoO₃-BKЦ, превышающая кристалличность исходного) может быть обусловлена тем, что каждый образец синтезирован в отдельном автоклаве, следовательно, незначительное изменение состава реакционной

смеси могло оказать влияние на физико-химические характеристики полученных кристаллов [10]. Кроме того, снижение степени кристалличности при модификации цеолита НП Ni, NiO, W и Мо в концентрации 10 масс. % также может указывать на тот факт, что введение металла в ВКЦ приводит к частичному деалюминированию и, следовательно, к образованию сложных соединений модификатора с алюминием [12].

Кроме рефлексов фазы ZSM-5 в каждом случае были обнаружены дифракционные максимумы, относящиеся к отражению от плоскостей кристаллов модификатора. Как видно, на рентгенограммах (рис. 2) достаточно четко выделяются две отдельные группы рефлексов, относящиеся к фазам цеолита и нанопорошка.

Сказанное справедливо и для других изученных образцов. Полученные данные, а также результаты электронной микроскопии (рис. 3) позволяют считать, что преобладающая часть нанометаллов не встраивается в структуру кристалла, а, вероятно, располагается на внешней поверхности.

Выводы

Таким образом, установлено, что синтезированный цеолит относится к структурному типу ZSM-5 (семейство пентасил), элементарная ячейка принадлежит ромбической сингонии с параметрами а = 20,094 Å, b = 19,889 Å, c = 13,397 Å. Модификация образцов цеолита электровзрывными нанопорошками металлов никеля, вольфрама и молибдена в концентрации от 1 до 10 масс. % не оказывает существенного влияния на его структуру, однако при самой большой из рассмотренных концентраций металлов наблюдается незначительное падение кристалличности. Наночастицы располагаются на внешней поверхности кристаллов цеолита.

РЕНТГЕНОФАЗОВЫЙ И РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ МОДИФИЦИРОВАННОГО НАНОПОРОШКАМИ МЕТАЛЛОВ ЦЕОЛИТА СЕМЕЙСТВА ПЕНТАСИЛ

ВЕСТНИКТОГУ. 2011. № 4 (23)

Библиографические ссылки

1. Каталитическая активность пентасила, содержащего наночастицы Pt, Ni, Fe и Zn, в превращениях углеводородов (сообщ. 1) / Л. М. Величкина, А. Н. Пестряков, А. В. Восмериков, И. В. Тузовская, Н. Е. Богданчикова, М. Авалос, М. Фариас, X. Тизнадо // Нефтехимия. – № 3. – 2008.

2. Применение механохимических технологий в цеолитном катализе / А. В. Восмериков, Л. М. Величкина, Л. Н. Восмерикова, Л. Л. Коробицына., Г. В. Иванов // Химия в интересах устойчивого развития. – № 10. – 2002.

3. *Гусев А. И.* Нанокристаллические материалы: Методы получения и свойства. – Екатеринбург: УрО РАН, 1998.

4. Конверсия метана в ценные химические продукты в присутствии наноструктурированных Мо/ZSM-5 катализаторов / З. Р. Исмагилов, Е. В. Матус, М. А. Керженцев, Л. Т. Цикоза, И. З. Исмагилов, К. Д. Досумов, А. Г. Мустафин // Нефтехимия. – Т. 51. – № 3. – 2011.

5. Исследование конверсии метана в ароматические углеводороды на катализаторах AG-Mo/ZSM-5 / А. В. Восмериков, В. И. Зайковский, Л. Л. Коробицына, В. В. Козлов, Н. В. Арбузова, С. П. Журавков // Кинетика и катализ. – Т. 52. – № 3. – 2011.

6. Особенности активных центров катализатора W-ZSM-5 дегидроароматизации метана по данным ПЭМВР / В. В. Козлов, В. И. Зайковский, А. В. Восмериков, Л. Л. Коробицына, Г. В. Ечевский // Кинетика и катализ. – Т. 49. – № 1. – 2008.

7. Восмерикова Л. Н., Ечевский Г. В., Восмериков А. В. Неокислительная конверсия природного газа на W-содержащих цеолитах типа ZSM-5 // Нефтепереработка и нефтехимия. – № 12. – 2006.

8. Астапова Е. С., Радомская В. И., Агапятова О. А. Морфология и электрофизические свойства поликристаллов Ga и In высококремнеземных цеолитов // Доклады Академии Наук. – № 4. – 2007.

9. Синтез и свойства сверхвысококремнеземных цеолитов типа ZSM-5 / Л. Л. Коробицына, Л. М. Величкина, А. В. Восмериков, В. И. Радомская, Е. С. Астапова, Н. В. Рябова, О. А. Агапятова // Журнал неорганической химии. – № 2. – 2008.

10. Коваль Л. М., Коробицина Л. Л., Восмериков А. В. Синтез, физикохимические и каталитические свойства высококремнеземных цеолитов. – Томск: ТомГУ, 2001.

11. *Treacy M. M. J., Higgins J. B.* Collection of Simulated XRD Powder Patterns for Zeolites. – N.-Y.: Elsevier, 2001.

 Козлов В. В. Дезактивация металлсодержащих пентасилов в процессе неокислительной конверсии метана: дис. канд. хим. наук. – Томск, 2008.

13. Павлов С. С., Aстапова Е. С. ИК-спектроскопическое исследование и определение удельной поверхности ВК-цеолитов с наночастицами // Asian School-Conference on Physics of Nanostructures and Nanomaterials: Proceedings. – Vladivostok: IACP FEB RAS. 2010.

38