

УДК 548.4

# © 2005 г. Е.А. Ванина, канд. физ.-мат. наук, И.В. Гопиенко, А.С. Калашников, А.Н. Чибисов

(Амурский государственный университет, Благовещенск)

# РАСЧЕТ ЭНЕРГИИ ДЕФЕКТООБРАЗОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ПАКЕТА ПРОГРАММ FHI96MD

Для кристаллов форстерита с помощью программного пакета FHI96MD рассчитаны энергетические характеристики связи атомов в кристалле, энергии дефектообразования и ширина запрещенной зоны.

### Введение

Кристаллы форстерита, легированные хромом, широко применяются в устройствах квантовой электроники в качестве пассивных затворов и активных элементов перестраиваемых твердотельных лазеров [1]. Особое внимание уделяется структурному совершенству лазерных кристаллов, поскольку наличие большого числа структурных дефектов ухудшает оптические свойства кристаллов.

Целью данной работы является уточнение энергетических характеристик связи атомов и дефектообразования в кристалле форстерита.

Форстерит (семейство оливина) относится к ортосиликатам с изоли-



*Рис. 1.* Кристаллическая структура кристаллов форстерита.

рованным (рис. 1) расположением отдельных тетраэдров [SiO<sub>4</sub>]. Кристалл имеет пространственную группу симметрии Pbnm. В кристаллической структуре форстерита Mg<sub>2</sub>SiO<sub>4</sub> ионы O<sup>2-</sup> образуют несколько искаженную гексагональную плотнейшую упаковку, половина октаэдрических пустот заполнена катионами Mg<sup>2+</sup>, и 1/8 тетраэдрических пустот – катионами Si<sup>4+</sup>.

В форстерите атомы магния занимают две кристаллографически неэквивалентные октаэдрические позиции: одна половина атомов находится в октаэдрах с центром инверсии C<sub>i</sub> (как M1), а другая – в октаэдрах с плоскостью зеркальной симметрии C<sub>s</sub> (как M2); а атомы кремния находятся в изолированных тетраэдрических позициях с зеркальной C<sub>s</sub> симметрией [4].

### Метод и детали вычислений

Для расчета мы использовали пакет программы FHI96MD [5], структура которой изображена на рис. 2.



Рис. 2. Блок-схема программы fhi96md.

Пакет представляет собой эффективный инструмент для проведения полноэнергетических расчетов многоатомных систем, таких как молекулы, кристаллы, дефекты в кристаллах и другие структуры.

В пакете реализован метод функционала электронной плотности (DFT) [6, 7], включающий возможность использования псевдопотенциалов и плоских волн.

Метод функционала электронной плотности относится к так называемым ab initio, или методам из первых принципов. Это класс методов, который основан только на уравнениях и законах квантовой механики, и при расчетах в них не используются различные параметры и приближения, взятые из эксперимента (что характерно для полуэмпирических методов). Работает теория функционала электронной плотности в рамках адиабатического приближения Борна-Оппенгеймера.

Программа использует методы зонной структуры и позволяет транслировать заданную геометрию элементарной ячейки, что дает возможность распространить расчеты на бесконечный кристалл.

Для вычисления обменной и корреляционной энергии использовалось градиентное приближение в форме, предложенной Педью и Вэнгом (Perdew, Wang: PW91) [8]. Псевдопотенциалы конструировались по методике Труллера-Мартинса (Troullier, Martins) [9] с помощью программы FHI98PP [10]; они были испытаны на отсутствие ложных состояний [ghost states] и проверены на способность воспроизвести основные решеточные характеристики объемных материалов (постоянную решетки и модуль упругости).

### Обсуждение результатов

Элементарная ячейка форстерита содержит 28 атомов, то есть 8 атомов магния Mg, 4 атома кремния Si и 16 атомов кислорода О. В элементарной ячейке форстерита начальные координаты атомов магния, кремния и кислорода соответствовали экспериментальным значениям [11]. Производилась релаксация атомной системы. Для этого подбирались такие значения параметров элементарной ячейки, при которых значение полной энергии системы минимально. В табл. 1 приведены равновесные значения параметров и объема ячейки.

На рис. 3 – 6 показаны зависимости полной энергии системы от равновесных значений параметров и объема ячейки. Разброс рассчитанных данных аппроксимировался выражением:

$$E_{fit} = A_1 d^2 + A_2 d + A_3, \tag{1}$$

где значения подгоночных параметров  $A_1$ ,  $A_2$  и  $A_3$  для постоянных ячейки a,b,c и объема V определялись при минимальном среднеквадратичном отклонении и приведены в табл. 2.

Таблица 1

| Параметры | Расчет | Эксперимент | Объем яче         | йки    |
|-----------|--------|-------------|-------------------|--------|
| ячейки    | 0      | Å           | V, Å <sup>3</sup> |        |
|           | A      | [12]        | Эксп.             | Данные |
|           |        |             | данные            | [12]   |
| а         | 4.805  | 4.733       |                   |        |
| b         | 10.256 | 10.210      | 299.13            | 289.75 |
| С         | 6.070  | 5.996       |                   |        |

# Таблица 2

| Параметры ячейки  | $A_{I}$                                                                          | $A_2$                                           | $A_3$                                        |
|-------------------|----------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| a<br>b<br>c       | 51.684 eV/E <sup>2</sup><br>35.477 eV/E <sup>2</sup><br>15.492 eV/E <sup>2</sup> | -496.644 eV/E<br>-727.703 eV/E<br>-188.074 eV/E | -6381.811 eV<br>-3843.267 eV<br>-7004.011 eV |
| Объем ячейки<br>V | $0.011 \text{ eV}/\text{\AA}^2$                                                  | -6.786 eV/Å                                     | -6560.480 eV                                 |







Рис. 4. Зависимость изменения полной энергии от параметра b.



Рис. 5. Зависимость полной энергии от параметра с.



Рис. 6. Зависимость полной энергии от объема ячейки.

В табл. 3 даны равновесные межатомные расстояния для ячейки.

|   |        | 2   |
|---|--------|-----|
| 1 | annina | - 4 |
| 1 | uonnuu | 2   |

| N₂ | Связь  | <i>Å</i> [11] | Pacчem, Å |
|----|--------|---------------|-----------|
| 1  | Mg1-O4 | 2.084         | 2.081     |
| 2  | Mg1-O5 | 2.068         | 2.010     |
| 3  | Mg1-O6 | 2.131         | 2.141     |
| 4  | Mg2-O4 | 2.181         | 2.175     |
| 5  | Mg2-O5 | 2.041         | 2.010     |
| 6  | Mg2-O6 | 2.213         | 2.230     |
| 7  | Si-O4  | 1.614         | 1.609     |
| 8  | Si-O5  | 1.655         | 1.680     |
| 9  | Si-O6  | 1.637         | 1.620     |

Получив отрелаксированную систему, мы рассчитали энергии связи атомов в ячейке. Один из атомов удаляли из элементарной ячейки на расстояние, при котором силы взаимодействия между атомами несущественны. Определяли энергию связи атома как разницу между энергией связи полной системы и энергией связи системы без одного атома.

В табл. 4 представлены результаты расчета энергий связи атомов в кристалле форстерита.

Таблица 4

|                                          |          | D D       |
|------------------------------------------|----------|-----------|
| Обозначение                              | эВ [3]   | Расчет эВ |
| Полная энергия системы E <sub>tot</sub>  | -7547.40 | - 7575.47 |
| Энергия атома магния<br>Е <sub>Мg</sub>  | -42.05   | -22.74    |
| Энергия атома кремния<br>Е <sub>Si</sub> | -144.64  | -101.96   |
| Энергия атома кислорода Е <sub>О</sub>   | -421.54  | -424.32   |
| Энергия связи                            | -112.2   | -196.59   |

Нами рассчитана ширина запрещенной зоны форстерита (широкощелевой диэлектрик).



Рис. 7. Распределение электронной плотности.

Ширина запрещенной зоны для данных кристаллов, рассчитанная нами (рис. 7), составляет приблизительно 4,5 эВ. В работе [13] экспериментально установлена ширина запрещенной зоны 6,4 эВ.

Рассчитанные энергии дефектообразования в  $Mg_2SiO_4$  представлены в табл. 5, где V – вакансия.

Таблица 5

| Обозначение | Значение энергии дефекта, эВ |
|-------------|------------------------------|
| V(Mg)       | 16.35                        |
| V(Si)       | 17.14                        |
| V(O)        | 16.20                        |

#### Заключение

В работе рассчитаны энергии дефектообразования с использованием пакета программ fhi96md. В основе расчета лежит метод функционала электронной плотности. Для построения равновесной структуры минимизирована равновесная энергия системы (табл. 1, рис. 3 – 6). В методе псевдопотенциала в расчет принимаются только валентные электроны, а влияние ядра и остовых электронов учитывается с помощью псевдопотенциалов, подбираемых таким образом, чтобы отклонения экспериментальных значений от значений, рассчитанных с их использованием, составляли не более 2%.

Для проверки правильности подобранных псевдопотенциалов рассчитаны межатомные расстояния в ячейке форстерита (табл. 3). Энергии отдельных атомов в ячейке рассчитаны для определения энергии связи в кристалле (табл. 4). По распределению электронной плотности определена ширина запрещенной зоны (рис.7). Рассчитанные нами с использованием пакета прикладных программ fhi96md энергии дефектообразования согласуются с результатами расчета [2, 3].

#### ЛИТЕРАТУРА

- 1. *Гайстер А.В., Жариков Е.В., Лебедев В.Ф. и др.* // Квантовая электроника. 2004. Т.34. № 8. С.693.
- 2. Walker M., Wright K., Staler B. Phys Chem Minerals. 2003. T.30. P.536-545.
- 3. Brobhol J. American Mineralogist. V.82. P.1049-1053.
- 4. Лебедев В.Ф., Гайстер А. В., Теняков С.Ю., Левченко А.Е., Дианов Е.М., Жариков Е.В. // Квантовая электроника. 2003. Т.33.
- 5. Bockstedte M., Kley A., Neugebauer J., Scheffler M. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and *ab initio* molecular dynamics. // Comp. Phys. Commun. 1997. V.107. P.187.
- 6. Hohenberg P., Kohn W. Inhomogeneous Electron Gas. // Phys. Rev. 1964. V. 136 P. 864.
- Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects // Phys. Rev. 1965. V.140 A. P.1133.
- 8. Perdew J. P. and Wang Y. Phys. Rev. B. 1986. V.33. P.8800.
- 9. Troullier N. and Martins J. L. Phys. Rev. B. 1991. V.43. P.1993.
- 10. Fuchs M., Scheffler M. Comp. Phys. Commun. 1999. V.119. P.67.
- 11. http://database.iem.ac.ru/mincryst/rus/s\_carta.php?Форстерит+1583
- 12. Гопиенко И.В., Ванина Е.А., Астапова Е.С., Грохольский А.В., Калашников А.С. Влияние электронного облучения на структуру кристаллов Mg<sub>2</sub>SiO<sub>4</sub> // Вестник АмГУ. 2004. Вып. №25. С.12-15.

# Моделирование систем 2005. №1(9)

13. Morin F.J, Oliver J.R. and Housley R.M. Electrical properties of forsterite, Mg<sub>2</sub>SiO<sub>4</sub> // Phys. Rev. 1977. V.16. №10. P. 4434-4445.

Статья представлена к публикации членом редколлегии Е.С. Астаповой.

УДК 621.9.06

## © 2005 г. Н.А. Грек

# (Амурский государственный университет, Благовещенск),

# А.Г. Ивахненко, д-р техн. наук,

### О.Н. Подленко

(Курский государственный технический университет)

# МОДЕЛИРОВАНИЕ ФОРМООБРАЗОВАНИЯ НА СТАНКАХ С ПАРАЛЛЕЛЬНОЙ КИНЕМАТИКОЙ

Разработаны математические модели формообразующей системы станков с параллельной кинематикой, режущих инструментов и процесса формообразования сложных поверхностей. Полученные модели предназначены для управления процессом формообразования.

### Введение

Металлорежущие станки с параллельной кинематикой получают широкое применение в качестве альтернативы многокоординатным обрабатывающим центрам традиционной компоновки с последовательным соединением узлов формообразующей системы. Наиболее распространенными являются фрезерные станки с шестью степенями свободы, реализованные на основе платформы Стюарта [1], – гексаподы. Область их применения – обработка сложных поверхностей. Однако использование при синтезе законов управления формообразующей системы этих станков строится на традиционных подходах [2], заключающихся в назначении технологом траектории перемещения режущего инструмента только на основе его личного опыта. Это не позволяет полностью использовать ресурс гексаподов по точности и производительности обработки. В данной работе поставлена и решена задача разработки модели процесса формообразования для станков с параллельной кинематикой.

### Постановка задачи

Узлы станка с параллельной кинематикой на основе платформы Стюарта и различные виды режущих инструментов рассматриваются как