Моделирование систем 2005. №1(9)

13. Morin F.J, Oliver J.R. and Housley R.M. Electrical properties of forsterite, Mg₂SiO₄ // Phys. Rev. 1977. V.16. №10. P. 4434-4445.

Статья представлена к публикации членом редколлегии Е.С. Астаповой.

УДК 621.9.06

© 2005 г. Н.А. Грек

(Амурский государственный университет, Благовещенск),

А.Г. Ивахненко, д-р техн. наук,

О.Н. Подленко

(Курский государственный технический университет)

МОДЕЛИРОВАНИЕ ФОРМООБРАЗОВАНИЯ НА СТАНКАХ С ПАРАЛЛЕЛЬНОЙ КИНЕМАТИКОЙ

Разработаны математические модели формообразующей системы станков с параллельной кинематикой, режущих инструментов и процесса формообразования сложных поверхностей. Полученные модели предназначены для управления процессом формообразования.

Введение

Металлорежущие станки с параллельной кинематикой получают широкое применение в качестве альтернативы многокоординатным обрабатывающим центрам традиционной компоновки с последовательным соединением узлов формообразующей системы. Наиболее распространенными являются фрезерные станки с шестью степенями свободы, реализованные на основе платформы Стюарта [1], – гексаподы. Область их применения – обработка сложных поверхностей. Однако использование при синтезе законов управления формообразующей системы этих станков строится на традиционных подходах [2], заключающихся в назначении технологом траектории перемещения режущего инструмента только на основе его личного опыта. Это не позволяет полностью использовать ресурс гексаподов по точности и производительности обработки. В данной работе поставлена и решена задача разработки модели процесса формообразования для станков с параллельной кинематикой.

Постановка задачи

Узлы станка с параллельной кинематикой на основе платформы Стюарта и различные виды режущих инструментов рассматриваются как

абсолютно твердые тела. Требуется получить модель процесса формообразования, позволяющую определять законы перемещения узлов формообразующей системы при обработке широкого класса сложных поверхностей.

Модель формообразующей системы гексапода

Станок на основе параллельной платформы представляет собой неподвижное основание, соединенное шестью раздвижными штангами с шарнирами на концах с подвижной платформой, на которой расположен шпиндельный узел с закрепленным в нем режущим инструментом. На рис. 1 показаны: а – сам станок; б – расчетная схема станка; в – последовательное преобразование систем координат гексапода.

Рис. 1. Описание основных узлов гексапода.

Переход из системы координат основания (СКО) в систему координат рабочей точки инструмента (СКР), т.е. точки инструмента, контактирующей с обрабатываемой поверхностью, осуществляется последовательным преобразованием систем координат (см. рис. 1в).

Уравнение формообразующей системы, определяющей преобразование СКО в СКР, для станка с параллельной кинематикой имеет вид [3]

$$r_0 = A_{\Pi} \cdot A_{\mu\nu} \cdot r_{\mu}, \tag{1}$$

где A_{Π} – матрица преобразования из СКО в систему координат платформы (СКП); A_{III} – матрица преобразования из СКП в систему координат инструмента (СКИ); r_{II} – вектор перехода из СКИ в систему координат рабочей точки инструмента (СКР).

Переход от СКО в СКП целесообразно производить в виртуальных координатах, учитывающих взаимное положение, ориентацию основания и платформы

$$A_{II} = A_1(x)A_2(y)A_3(z)A_4(\varphi)A_5(\psi)A_6(\theta),$$
(2)

где соответственно А1, А2, А3 – матрицы перемещения вдоль координатных

осей X, Y, Z; A_4 , A_5 , A_6 – матрицы поворота вокруг этих же осей; аргументами матриц являются величины перемещений x, y, z и углы поворотов φ , ψ , θ .

Матрица преобразования координат из СКП в СКИ имеет вид:

$$A_{III} = A_6(\theta_{III})A_3(-H_{III}),$$

здесь H_{III} – перемещение от центра подвижной платформы к зажимному устройству для режущего инструмента; θ_{III} – угол поворота шпинделя.

Подставляя уравнения (2) и (3) в уравнение (1) с преобразованием, получим

$$r_0 = A_1(X)A_2(Y)A_3(Z)A_4(\phi)A_5(\psi)A_6(\theta + \theta_{III})A_3(-H_{III})r_{II}.$$
(4)

(3)

Хотя имеется внешняя схожесть уравнения (4) с аналогичными выражениями, – например, в [2], между ними есть принципиальное отличие, заключающееся в том, что здесь учитывается не положение центра подвижной платформы, а положение точки режущей кромки инструмента. Это позволяет существенно упростить анализ и синтез процесса формообразования, по сравнению с подходом, данным в [2].

Расстояние между шаровыми опорами равно длинам раздвижных штанг, которые являются физическими управляемыми координатами. При известных виртуальных координатах $x, y, z, \varphi, \psi, \theta$, используя уравнение (2), можно получить значения координат шаровых опор платформы (известных в СКП) в СКО и соответственно длины штанг:

$$q_{1} = \sqrt{(x_{A1c\kappa o} - x_{A})^{2} + (y_{A1c\kappa o} - y_{A})^{2} + (z_{A1c\kappa o} - z_{A})^{2}},$$
(5)

здесь q₁ – длина первой штанги;

$$X_{A1CKO} = \cos(\psi)\cos(\theta)X_{CK\Pi} - \cos(\psi)\sin(\theta)Y_{CK\Pi} + \sin(\psi)Z_{CK\Pi} + X,$$

$$Y_{A1CKO} = (\sin(\varphi)\sin(\psi)\cos(\theta) + \cos(\varphi)\sin(\theta))X_{CK\Pi}$$

$$+ (-\sin(\varphi)\sin(\psi)\sin(\theta) + \cos(\varphi)\cos(\theta))Y_{CK\Pi} - \sin(\varphi)\cos(\psi)Z_{CK\Pi} + Y,$$

$$Z_{A1CKO} = (-\cos(\varphi)\sin(\psi)\cos(\theta) + \sin(\varphi)\sin(\theta))X_{CK\Pi}$$

(6)

+ $(\cos(\varphi)\sin(\psi)\sin(\theta) + \sin(\varphi)\cos(\theta))Y_{CK\Pi} + \cos(\varphi)\cos(\psi)Z_{CK\Pi} + Z,$

где X_{A1cko} , Y_{A1cko} , z_{A1cko} – координаты шаровой опоры подвижной платформы в СКО; x_A , y_A , z_A – координаты опоры в СКП.

Длины остальных раздвижных штанг находятся аналогично.

Модели режущих инструментов

Используя различные виды режущего инструмента, можно выбрать рациональную схему обработки заданной поверхности. При анализе формообразующих возможностей станков с параллельной кинематикой ограничимся тремя видами инструментов, охватывающих достаточно широкий спектр возможный обрабатываемых поверхностей. На рис. 2 показаны: а – торцевая фреза; б – цилиндрическая фреза; в – фасонная полусферическая фреза; г – комбинированная модель инструмента.

Модели рассматриваемых инструментов имеют вид:

1. Торцевая фреза (рис. 2а). Радиус-вектор режущей кромки торцевой фрезы имеет вид

 $r_{\rm HT} = A_6(\theta_P)A_3(-H_{\phi})A_2(R_P)e^4$,

где θ_P – угол ($0 \le \theta_P \le 2\pi$), определяющий положение рабочей точки инструмента; R_P – радиус рабочей точки фрезы, $0 \le R_P \le R_{\phi}$; R_{ϕ} – радиус фрезы; H_{ϕ} – высота фрезы; e^4 – радиус-вектор начала координат, $e^4 = (0,0,0,1)^{\mathrm{T}}$.

Рис. 2. Виды моделей инструментов.

2. Цилиндрическая фреза (рис. 2б). Радиус-вектор режущей кромки цилиндрической фрезы имеет вид

 $r_{HII} = A_6(\theta_P) A_3(-H_P) A_4(\pi/2) A_3(-R_{\phi}) e^4,$

где R_{ϕ} – радиус фрезы; H_{ϕ} – высота фрезы; H_P – высота рабочей точки фрезы, $0 \le H_P \le H_{\phi}$.

3. Фасонная полусферическая фреза (рис. 2в). Радиус-вектор режущей кромки фасонной полусферической фрезы имеет вид

 $r_{\mu\phi} = A_6(\theta_P) A_4(\varphi_P) A_3(-R_{\phi}) e^4$

где φ_P – угол определяющий рабочую точку фрезы, причем $0 \le \varphi_P \le \pi/2$;

4. Комбинированная модель инструмента (рис. 2г). Все описанные выше инструменты можно представить с помощью одной комбинированной модели, в которой радиус-вектор режущей кромки равен

$$r_{\mu\phi} = A_6(\theta_P) A_3(-H_P) A_2(R_{P2}) A_4(\varphi_P) A_3(R_{P3}) e^4,$$
(7)

где R_{P2} – радиус торцевой фрезы; R_{P3} – радиус цилиндрической и фасонной фрезы.

Переход от одной модели инструмента к другой осуществляется путем присваивания конкретных значений и наложений ограничений на переменные уравнения (7):

1) $0 \le \theta_P \le 2\pi$; $\varphi_P = 0$; $0 \le R_{P2} \le R_{\phi}$; $H_P = H_{\phi}$; $R_{P3} = 0$, для торцевой фрезы; 2) $0 \le \theta_P \le 2\pi$; $\varphi_P = 0$; $R_{P3} = R_{\phi}$; $0 \le H_P \le H_{\phi}$; $R_{P2} = 0$, для цилиндрической фрезы;

3) $0 \le \theta_P \le 2\pi$; $0 \le \varphi_P \le \pi/2$; $R_{P3} = R_{\phi}$; $H_P = 0$; $R_{P2} = 0$, для фасонной полусферической фрезы. Комбинированная модель инструмента позволяет использовать единственную модель ФС, учитывающую возможность применения сразу трех видов инструментов, с последующим выбором конкретного вида инструмента для обработки поверхности.

Модель процесса формообразования

Рассмотрим обработку сложной номинальной поверхности любым из трех применяемых инструментов, с наложением связи огибания [4], в результате чего при обработке используется не вся поверхность инструмента, а только некоторая точка режущей кромки. Выбором ее положения с учетом вращения инструмента можно обеспечить заданную скорость резания.

Функция формообразования в виртуальных координатах, с использованием комбинированной модели инструмента (7), имеет вид

$$r_{0} = A_{1}(X)A_{2}(Y)A_{3}(Z)A_{4}(\varphi)A_{5}(\psi)A_{6}(\theta + \theta_{III} + \theta_{P}) \times A_{3}(-H_{III} - H_{P})A_{2}(R_{P2})A_{4}(\varphi_{P})A_{3}(-R_{P3})e^{4}.$$
(8)

Под номинальной поверхностью понимается теоретическая форма обработанной поверхности детали без учета микронеровностей и других отклонений. Номинальная поверхность (рис. 3а) в параметрической форме в СКО имеет вид r = r(u, v), где u, v – криволинейные координаты на поверхности.Кроме того, на рис. 3б и 3б соответственно показаны преобразования координат и обрабатываемая поверхность.

Рис. 3. Представление номинальной поверхности детали.

Введем подвижную систему координат (ПСК) для произвольной точки номинальной поверхности с осями $i = \tau_1, j = \tau_2, k = v$, где $i, j, k - единичные векторы, направленные по координатным осям ПСК; <math>\tau_1, \tau_2 - единичные касательные к поверхности; v – единичная нормаль к поверхности. Уравнения единичных касательных в произвольной точке к номинальной поверхности имеют вид:$

$$\tau_{1} = \frac{dr_{0} / du}{|dr_{0} / du|}; \tau_{2} = \frac{dr_{0} / dv}{|dr_{0} / dv|},$$

а единичная нормаль в произвольной точке к номинальной поверхности выражается как:

$$\nu = \frac{\tau_1 \times \tau_2}{|\tau_1 \times \tau_2|} \,.$$

Уравнение номинальной поверхности в подвижной системе координат можно получить, осуществив перемещение по радиус-вектору *r* и совершив повороты вокруг координатных осей, обеспечивающие параллельность координатных осей СКО с осями ПСК (рис. 3б), после чего получим:

$$r_{\Pi CK} = \begin{bmatrix} \frac{\partial x / \partial u}{|\partial r_0 / \partial u|} & \frac{\partial x / \partial v}{|\partial r_0 / \partial v|} & \frac{\partial y / \partial u \times \partial z / \partial v - \partial y / \partial v \times \partial z / \partial u}{|\partial r_0 / \partial u \times \partial r_0 / \partial v|} & x(u, v) \\ \frac{\partial y / \partial u}{|\partial r_0 / \partial u|} & \frac{\partial y / \partial v}{|\partial r_0 / \partial v|} & \frac{\partial z / \partial u \times \partial x / \partial v - \partial z / \partial v \times \partial x / \partial u}{|\partial r_0 / \partial u \times \partial r_0 / \partial v|} & y(u, v) \\ \frac{\partial z / \partial u}{|\partial r_0 / \partial u|} & \frac{\partial z / \partial v}{|\partial r_0 / \partial v|} & \frac{\partial x / \partial u \times \partial y / \partial v - \partial y / \partial v \times \partial y / \partial u}{|\partial r_0 / \partial u \times \partial r_0 / \partial v|} & z(u, v) \\ 0 & 0 & 0 & 1 \end{bmatrix} e^{4}.$$
(9)

Обработка заданной поверхности на станке с параллельной кинематикой обеспечивается при равенстве функции формообразования (8) и уравнения номинальной поверхности в ПСК (9), т.е. $r_0 = r_{\Pi CK}$. Из данного равенства определяем виртуальные координаты станка с параллельной кинематикой для обработки произвольной точки поверхности:

$$\begin{cases} X = x(u,v) - R_{P3} \cdot (\cos(\psi)\sin(\theta_0)\cos(\varphi_p) + \sin(\psi)\sin(\varphi_p)) \\ - R_{P2} \cdot \cos(\psi)\sin(\theta_0) - H_0 \cdot \sin(\psi); \\ Y = y(u,v) + R_{P3} \cdot (-\sin(\varphi_p)\sin(\varphi)\sin(\psi)\sin(\theta_0) + \sin(\varphi_p)\cos(\varphi)\cos(\theta_0)) \\ + \sin(\varphi)\cos(\psi)\cos(\varphi_p)) - R_{P2}(\sin(\varphi)\sin(\psi)\sin(\theta_0) + \cos(\varphi)\cos(\theta_0)) \\ + H_0 \cdot \sin(\varphi)\cos(\psi); \\ Z = z(u,v) + R_{P3} \cdot (\sin(\varphi_p)\sin(\varphi)\cos(\theta_0) - \cos(\varphi)\cos(\psi)\cos(\varphi_p) \\ + \sin(\varphi_p)\cos(\varphi)\sin(\psi)\sin(\theta_0)) + R_{P2}(\cos(\varphi)\sin(\psi)\sin(\theta_0) \\ + \sin(\varphi)\cos(\theta_0)) - H_0 \cdot \cos(\varphi)\cos(\psi); \\ \psi := \arcsin\left(\frac{\partial x/\partial v}{|\partial r_0/\partial v|} \cdot \sin(\varphi_p) + \frac{\partial y/\partial u \times \partial z/\partial v - \partial y/\partial v \times \partial z/\partial u}{|\partial r_0/\partial u \times \partial r_0/\partial v|} \cos(\varphi_p)\right); \\ \varphi := -\arcsin\left(\frac{\frac{\partial y/\partial v}{|\partial r_0/\partial v|} \cdot \sin(\varphi_p) + \frac{\partial z/\partial u \times \partial x/\partial v - \partial z/\partial v \times \partial x/\partial u}{|\partial r_0/\partial u \times \partial r_0/\partial v|} \cdot \cos(R\varphi_p)\right); \\ \theta_0 = \arccos\left(\frac{\partial x/\partial u}{|\partial r_0/\partial u|}/\cos(\psi)\right). \end{cases}$$

Следует отметить, что угол $\theta_0 = \theta + \theta_{III} + \theta_P$ может принимать любое требуемое значение, поскольку составляющая θ_{III} является скоростью вращения шпинделя, т.е. главным движением в процессе формообразование. После определения виртуальных координат с помощью зависимостей (5), (6) определяются законы изменения длин штанг при обработке заданной поверхности.

Пример

В качестве примера рассмотрим обработку поверхности, заданной параметрическим уравнением (рис. 3в):

 $x = 0.2 \cdot v; y = 0.7 \cdot u; z = -1.7 + 0.3 \cdot u - 0.24 \cdot u^2$, где u = 0...1; v = 0...1.

Виртуальные координаты станка, соответствующие обработке заданной поверхности, равны:

$$\begin{cases} X = 0.2 \cdot v - R_{P3} \cdot (\cos(\psi)\sin(\theta_0)\cos(\varphi_P) + \sin(\psi)\sin(\varphi_P)) \\ - R_{P2} \cdot \cos(\psi)\sin(\theta_0) - H_0 \cdot \sin(\psi); \\ Y = 0.7 \cdot u + R_{P3} \cdot (-\sin(\varphi_P)\sin(\varphi)\sin(\psi)\sin(\theta_0) + \sin(\varphi_P)\cos(\varphi)\cos(\theta_0) \\ + \sin(\varphi)\cos(\psi)\cos(\varphi_P)) - R_{P2}(\sin(\varphi)\sin(\psi)\sin(\theta_0) + \cos(\varphi)\cos(\theta_0)) \\ + H_0 \cdot \sin(\varphi)\cos(\psi); \\ Z = -1.7 + 0.3 \cdot u - 0.24 \cdot u^2 + R_{P3} \cdot (\sin(\varphi_P)\sin(\varphi)\cos(\theta_0) - \cos(\varphi)\cos(\psi)\cos(\varphi_P) \\ + \sin(\varphi_P)\cos(\varphi)\sin(\psi)\sin(\theta_0)) + R_{P2}(\cos(\varphi)\sin(\psi)\sin(\theta_0) \\ + \sin(\varphi)\cos(\theta_0)) - H_0 \cdot \cos(\varphi)\cos(\psi); \\ \psi := \arcsin(\sin(\varphi_P)); \\ \psi := \arcsin(\sin(\varphi_P)); \\ \varphi := -\arcsin(\frac{0.6 - 0.069 \cdot u}{\sqrt{0.0196 + (0.06 - 0.096 \cdot u)^2}} \cdot \cos(R\varphi)) \\ \phi := -\arcsin(\frac{\sqrt{0.0196 + (0.06 - 0.096 \cdot u)^2}}{\cos(\psi)}) \end{cases}$$

Рассмотрим проход режущего инструмента при u = 0,5 и v = 0...1. Параметры инструмента равны: $R\phi = 0,05$ м; $H_{III} = 0,2$ м. На рис. 4 представлены полученные зависимости изменения расчетных длин штанг при изменении v от 0 до 1, причем обработка проводится соответственно: а – торцевой фрезой; б – цилиндрической фрезой; в – фасонной полусферической фрезой.

Рис. 4. Законы изменения штанг для обработки поверхности при u = 0,5.

Полученные зависимости позволяют анализировать формообразующие возможности гексапода, учитывая особенности обработки конкретной поверхности: по размеру рабочего пространства механизма, минимальной и максимальной длине раздвижных штанг, необходимой дискретности привода раздвижных штанг, недопустимости пересечений элементов конструкции.

Моделирование систем 2005. №1(9)

Заключение

В работе решена задача моделирования процесса формообразования на станке с параллельной кинематикой.

Приведены зависимости для определения законов изменения длин раздвижных штанг, на основе которых можно решать задачи по оптимизации процесса обработки сложных поверхностей.

ЛИТЕРАТУРА

- 1. Stewart D. A platform with six degrees of freedom // Proc. Inst. Mech. Eng. 1965/1966. Vol. 180, pt 1, N15/ P. 371-386.
- 2. *Афонин В.Л., Крайнев А.Ф., Ковалев В.Е. и др.* Обрабатывающее оборудование нового поколения. Концепция проектирования. М.: Машиностроение, 2001.
- Ивахненко А.Г. Управление станками с параллельной кинематикой при формообразовании. Фундаментальные и прикладные вопросы механики: Сборник докладов международной научной конференции / Под ред. К.А. Чехонина. Хабаровск: Изд-во Хабар. гос. техн. ун-та, 2003. Т.2. С. 140-144.
- 4. Решетов Д.Н., Портман В.Т. Точность металлорежущих станков. М.: Машиностроение, 1986.

Статья представлена к публикации членом редколлегии Е.Л. Ереминым.

УДК 621.315

© 2005 г. И.Е. Еремин, канд. физ.-мат. наук, В.В. Еремина, канд. физ.-мат. наук (Амурский государственный университет, Благовещенск)

МОДЕЛИРОВАНИЕ ПОЛЯРИЗАЦИОННЫХ СВОЙСТВ КОНДЕНСИРОВАННЫХ ДИЭЛЕКТРИЧЕСКИХ СРЕД

Рассматриваются методологические аспекты математического моделирования диэлектрических свойств ионных кристаллов и полярных жидкостей. Обосновывается универсальность применения кибернетической модели напряженности эффективного электрического поля, действующего внутри поляризованного образца.

Введение

На современном этапе научно-технического прогресса все большее внимание уделяется вопросам поиска конструкционных диэлектрических