УДК 338:001.891.573

© В. К. Булгаков, В. В. Стригунов, 2006

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ДИНАМИКОЙ РЕГИОНАЛЬНОЙ ЭКОНОМИЧЕСКОЙ СИСТЕМЫ ПРИ ЗАДАННОМ ГОРИЗОНТЕ ПЛАНИРОВАНИЯ

Булгаков В. К. – д-р физ.-мат. наук, проф. кафедры «Программное обеспечение вычислительной техники и автоматизированных систем»; Стригунов В. В. – аспирант кафедры «Программное обеспечение вычислительной техники и автоматизированных систем» (ТОГУ)

Рассматривается задача оптимального управления динамикой экономической системы региона для заранее заданного горизонта планирования, дается решение краевой задачи оптимального управления и соответствующих ему оптимальных траекторий.

The problem of optimal controlling the dynamics of the regional economic system under the set horizon of planning is considered, solving the regional problem of optimum control and optimum trajectories corresponding them is given

Для решения задачи оптимального управления динамикой региональной экономической системы для случая, когда горизонт планирования заранее задан, используем в качестве основы результаты предыдущей статьи [1].

1. Постановка задачи

Представим область допустимых значений функции управления как замкнутое множество

$$\overline{W} = \{ w(t) \in C[0, T_p] \mid w(t) \in [w_1, w_2] \},$$
(1)

где

$$w_{1} = \pi_{1} B(x(t)), \quad w_{2} = \pi_{2} B(x(t)),$$

$$\pi_{1} = c'_{w1} C_{\infty}, \quad \pi_{2} = c_{w2} C_{\infty}, \quad c'_{w1} = r_{w} + r_{y},$$
(2)

 T_{p} — заранее заданный горизонт планирования, $T_{p} < \infty$.

Рассмотрим задачу об отыскании оптимального управления $w^*(t) \in \overline{W}$ макроэкономической системы региона в следующем смысле: найти управление $w(t) \in \overline{W}$, которое переводит систему

$$\frac{dx}{dt} = a B(x) - \lambda x - p w \tag{3}$$

из начального фиксированного состояния $x(0) = x_1$ в конечное фиксированное состояние $x(T_p) = x_2$ за заданное заранее время T_p при условии, что интеграл благосостояния

$$J = \int_{0}^{T_p} w^{\alpha}(t) dt \tag{4}$$

принимает максимальное значение.

Математическая постановка задачи имеет вид:

Отметим, что в отличие от задачи, рассмотренной в [1], в данной задаче (5) время T_p заранее задано. Предположим также, что $x_1 < x_2 < x_s$.

2. Решение краевой задачи оптимального управления

Согласно леммам 1, 2 работы [1] рассмотрим в плоскости (ψ, x) область $\Omega_1^+ \subset \Omega_1$ (рис. 1), ограниченную интегральной кривой a_1 , касающейся снизу круга O_{sh} , кривой $\psi_0^+(x)$ и горизонтальным отрезком A'A, находящемся на уровне x_1 .

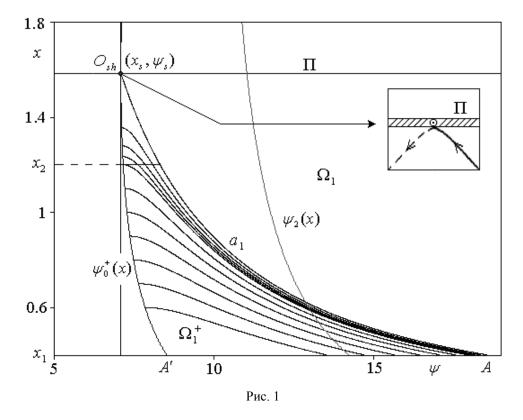
Рассмотрим экономический процесс, оптимальная фазовая и сопряженная переменные $x^*(t)$, $\psi(t)$ которого описываются системой уравнений:

$$\frac{dx}{dt} = F(x, \psi)
\frac{d\psi}{dt} = G(x, \psi)$$
(6)

здесь

$$F(x,\psi) = \begin{cases} a \left(B(x) - \gamma x - \sigma \psi^{-\frac{1}{1-\alpha}} \right) & \text{при} \quad \psi_0(t) \leq \psi(t) < \psi_2(t) \\ a_2 \left(B(x) - \gamma_2 x \right) & \text{при} \quad \psi(t) \geq \psi_2(t) \end{cases},$$

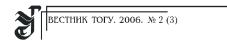
$$G(x,\psi) = a \left(\gamma - B'(x) \right) \psi.$$



Рассмотрим также следующую эквивалентную системе (6) систему уравнений, в которой в качестве независимой переменной взята сопряженная переменная ψ , а в качестве функций — фазовая переменная x и время t:

$$\frac{dx}{d\psi} = \varphi(x, \psi)$$

$$\frac{dt}{d\psi} = \chi(x, \psi)$$
(7)



здесь

$$\varphi(x,\psi) = \begin{cases} \frac{B(x) - \gamma x - \sigma \psi^{-\frac{1}{1-\alpha}}}{\gamma - B'(x)} \frac{1}{\psi} & \text{при} \quad \psi_0(x) < \psi < \psi_2(x) \\ \eta_2 \frac{B(x) - \gamma_2 x}{\gamma - B'(x)} \frac{1}{\psi} & \text{при} \quad \psi \ge \psi_2(x) \end{cases},$$

$$\chi(x,\psi) = \frac{\eta}{\gamma - B'(x)} \frac{1}{\psi}.$$

В работе авторов [1] доказана теорема 3, дающая решение задачи оптимального управления для конечного горизонта планирования, заранее не заданного. В ней рассмотрены два случая. Случай А: $x_{\min} \leq x_1 < x_2 < x_s$, В: $x_s < x_2 < x_1 \leq x_{\max}$. Для удобства дальнейшего изложения ниже сформулируем первую часть этой теоремы — случай А, для которого ниже решается задача об оптимальном управлении при заданном заранее времени перехода T_p из состояния x_1 в состояние x_2 при условиях $x_1 < x_2 < x_s$.

Теорема 1. Рассмотрим экономический процесс, описываемый системой уравнений (7). Пусть x_1 , x_2 — точки начального и конечного состояния системы $x_1, x_2 \in \Omega_1^+$, причем $x_1 < x_2 < x_s$. Тогда решение задачи оптимального управления для заранее не заданного времени перехода определяется задачей Коши

$$\frac{dx^{*}}{d\psi} = \begin{cases}
\eta_{2} \frac{B(x^{*}) - \gamma_{2} x^{*}}{\gamma - B'(x^{*})} \frac{1}{\psi} & \text{при } \psi_{2}(x^{*}) \leq \psi \\
\frac{B(x^{*}) - \gamma x^{*} - \sigma \psi^{-\frac{1}{1-\alpha}}}{\gamma - B'(x^{*})} \frac{1}{\psi} & \text{при } \psi_{0}(x_{2}) \leq \psi < \psi_{2}(x^{*}) \\
\frac{d\theta}{d\psi} = \frac{\eta}{\gamma - B'(x^{*})} \frac{1}{\psi}
\end{cases}$$
(8)

с начальными условиями:

$$\psi_2 = \psi_0(x_2) = \frac{c_q}{\left[B(x_2) - \gamma x_2\right]^{1-\alpha}}, \quad x(\psi_2) = x_2, \quad \theta(\psi_2) = 0.$$
 (9)

В работе авторов [2] доказана теорема 2, первая часть которой нам понадобится для исследования задачи (5) оптимального управления для случая, когда время перехода T_p из состояния x_1 в состояние x_2 задано заранее. С целью удобства изложения настоящей работы также сформулируем первую часть этой теоремы.

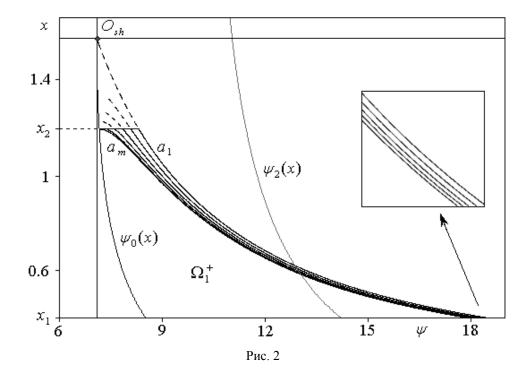
<u>Теорема 2.</u> Рассмотрим экономический процесс (7). Пусть $x_1, x_2 \in \Omega_1^+$ — начальное и конечное состояние экономической системы, причем $x_1 < x_2 < x_s$.

Тогда время перехода из состояния x_1 в состояние x_2 по экстремалям $a_1, ..., a_m$ и соответствующие значения интеграла благосостояния удовлетворяют неравенствам:

$$T_1 < T_2 < \dots < T_m,$$
 (10)

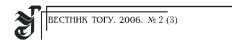
$$J_1 < J_2 < \dots < J_m \,. \tag{11}$$

Пусть x_1 , x_2 — интересующие нас начальное и конечное состояние экономической системы. Рассмотрим область Ω_1^+ — рис. 2.



Заметим, что через сечения x_1 , x_2 проходят экстремали $\{a_i\} \in \Omega_1^+$, $i=\overline{1,m}$ (m — любое целое число).

Напомним, что экстремаль a_1 касается снизу круга O_{sh} , а экстремаль a_m в сечении x_2 имеет общую точку с кривой $\psi_0(x)$. Очевидно, что все экстремали семейства $\{a_i\}$, проходящие через сечения x_1 , x_2 ,



— это крайние экстремали a_1 , a_m , а также находящиеся между ними экстремали a_2 , ..., a_{m-1} .

В силу неравенств (10) теоремы 2 минимальное время перехода по экстремалям $\{a_i\}$, $i=\overline{1,m}$ из состояния x_1 в состояние x_2 равно T_1 — времени перехода по экстремали a_1 , а максимальное время перехода из состояния x_1 в состояние x_2 равно T_m — соответствующее экстремали a_m . Введем обозначения: $T_{\min}=T_1$, $T_{\max}=T_m$. Откуда следует очевидная теорема.

<u>Теорема 3.</u> Если в задаче оптимального управления (5) заранее заданное время перехода T_p из состояния x_1 в состояние x_2 удовлетворяет условию

$$T_p \notin [T_{\min}, T_{\max}], \tag{12}$$

то задача (5) не имеет решения.

Докажем следующую основную теорему данной статьи, дающую решение задачи оптимального управления при конечном, заранее заданном горизонте планирования.

<u>Теорема 4.</u> Если в задаче оптимального управления (5) для времени перехода T_p из состояния x_1 в состояние x_2 имеет место включение

$$T_p \in [T_{\min}, T_{\max}], \tag{13}$$

то решение задачи оптимального управления (5) существует и единственно.

Доказательство

1°. Вначале решаем численно (например, методом Рунге-Кутта IV порядка точности) систему уравнений (8) с начальными условиями:

$$x_{21} = x_s - h$$
, $\psi_{21} = \psi_0(x_{21}) = \frac{c_q}{\left[B(x_{21}) - \gamma x_{21}\right]^{1-\alpha}}$, $\theta(\psi_{21}) = 0$. (14)

В результате находим интегральную кривую (экстремаль) a_1 , вычисляем все строки табл. 1 предыдущей статьи [1], интеграл благосостояния. Кроме того, в результате счета фиксируем момент времени θ_1 — момент прохождения экстремалью $a_1 = x^*(\psi, \psi_{21})$ сечения x_2 , а также значение аргумента ψ_{a_1} , при котором экстремаль a_1 пересекает сечение x_2 . Фиксируем также момент времени T, при котором экстремаль a_1 пересекает сечение x_1 . Очевидно, имеем $T_{\min} = T + \theta_1$.

Может оказаться, что

$$T_p = T_{\min}$$
 или $0 < T_p - T_{\min} < \varepsilon_{comp}$, (15)

где T_p — заранее заданное время задачи (5); ε_{comp} — наперед выбранная приемлемая точность представления T_p в компьютере. Тогда решение системы уравнений (8) с граничными условиями (14), точнее, левая часть табл. 1 работы [1] до столбца T_{\min} , ..., $x_2^* = x_2$, интеграл благосостояния $\int_0^{T_{\min}} w^*(t)^{\alpha} dt$ — есть решение задачи (5) с заранее заданным временем перехода T_p . Этот случай, конечно, маловероятен.

 2° . В том случае, когда условие (15) не имеет места, считаем систему уравнений (8) с начальными условиями (9). В результате находим экстремаль a_m , вычисляем строки табл. 1 статьи [1], интеграл благосостояния. Согласно первому начальному условию (9) по заданной величине x_2 вычисляем значение сопряженной переменной ψ_{2m} . В рассматриваемой задаче Коши переменная $\theta=0$, поэтому $T_{\max}=T$.

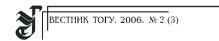
Напомним, что T — это горизонт планирования каждой задачи Коши, заранее не заданный и определяемый к моменту окончания решения, т. е. это значение со знаком минус решения $\theta(\psi)$ второго уравнения системы (8), когда экстремаль $x^*(\psi)$ достигает значения x_1 .

Опять же может оказаться, что

$$T_p = T_{\max}$$
 или $0 < T_{\max} - T_p < \varepsilon_{comp}$. (16)

Тогда решение задачи Коши (8), (9), т. е. табл. 1 работы [1], интеграл благосостояния $\int\limits_0^{T_{\max}} w^*(t)^{\alpha} \ dt$ — есть решение рассматриваемой задачи

- (5) с заранее заданным временем перехода T_p . Этот случай также маловероятен.
- $\bar{3}^{\rm o}$. Рассмотрим наиболее реальную ситуацию, когда $T_p \in (T_{\min}, T_{\max})$. Введем обозначения: $a = \psi_{2m}$, $b = \psi_{a_1}$. Тогда очевидно, что для любого $\psi_2 \in (a,b)$ и $x = x_2$ задача Коши



$$\frac{dx^{*}}{d\psi} = \begin{cases}
\eta_{2} \frac{B(x^{*}) - \gamma_{2} x^{*}}{\gamma - B'(x^{*})} \frac{1}{\psi} & \text{при } \psi_{2}(x^{*}) \leq \psi \\
\frac{B(x^{*}) - \gamma x^{*} - \sigma \psi^{-\frac{1}{1-\alpha}}}{\gamma - B'(x^{*})} \frac{1}{\psi} & \text{при } a < \psi < \psi_{2}(x^{*}) \\
\frac{d\theta}{d\psi} = \frac{\eta}{\gamma - B'(x^{*})} \frac{1}{\psi} \\
\psi = \psi_{2}, \quad x^{*} = x_{2}, \quad \theta = 0
\end{cases} \tag{17}$$

определяет интегральную кривую (экстремаль), исходящую из точки ψ_2 интервала $a < \psi_2 < b$, $x = x_2$, экстремаль, находящуюся между экстремалями a_m , a_1 . Каждой точке интервала $a < \psi_2 < b$, $x = x_2$ задача Коши (17) ставит в однозначное соответствие время перехода $T(\psi_2)$ по соответствующей экстремали. В книге Л. С. Понтрягина [3] сформулирована и доказана интегральная теорема о непрерывной зависимости решения от начальных значений для системы обыкновенных дифференциальных уравнений (см. теорему 14 с. 182-184). Применяя интегральную теорему Л. С. Понтрягина о непрерывной зависимости решения от начальных значений к задаче Коши (17) при $\psi_2 \in (a,b)$, убеждаемся в непрерывности функциональной зависимости $T(\psi_2)$. Согласно неравенству (10) теоремы 2 зависимость $T(\psi_2)$ есть строго монотонно убывающая функция на отрезке [a,b]. Введем функцию $au(\psi_2) = T(\psi_2) - T_{\scriptscriptstyle p}$. Очевидно, что функция $au(\psi_2)$ также непрерывная и строго монотонно убывающая на отрезке $\psi_2 \in [a, b]$. На рис. 3 представлена зависимость $\tau(\psi_2)$, полученная серией расчетов задачи Коши (17) для экономической системы, параметры которой были приведены в [1] для $T_p = 5.5$.

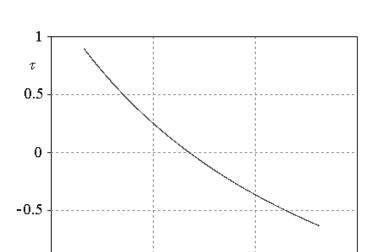
В силу ранее рассмотренных двух случаев имеем:

$$\tau(a) = T_{\text{max}} - T_p > 0 , \quad \tau(b) = T_{\text{min}} - T_p < 0 .$$
 (18)

Тогда согласно известной теореме математического анализа о прохождении непрерывной функции $\tau(\psi_2)$ через нуль при смене знаков приходим к выводу, что внутри отрезка [a,b] найдется такая точка ξ , значение функции $\tau(\psi_2)$ в которой равно нулю $\tau(\xi) = 0$. Так как функция $\tau(\psi_2)$ строго монотонно убывающая на [a,b], то точка ξ является единственной. Что и завершает доказательство теоремы 4.

-1

8.5



Замечание 1. Корень уравнения $\tau(\xi) = 0$ (или, что то же самое, $T(\xi) = T_p$) вычислялся методом половинного деления [4], а также методом хорд [5]. Сравнение скорости сходимости методов показано в п. 3.

Рис. 3

8

 Ψ_2

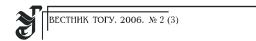
7.5

Замечание 2. Рассмотренная задача оптимального управления (5) при заданном заранее времени перехода T_p из состояния x_1 в состояние x_2 является внутренне противоречивой, компромиссной. Так, из неравенства (10) теоремы 2 следует, что наименьшее время перехода T_p достигается по экстремали a_1 , однако при этом и целевой функционал — функционал благосостояния общества — вдоль экстремали a_1 будет минимальным, что следует из неравенств (11) теоремы 2.

С другой стороны, наибольшее время перехода из состояния x_1 в состояние x_2 имеет место по экстремали a_m , при этом интеграл благосостояния вдоль экстремали a_m достигает наибольшего значения.

Поэтому компромисс состоит в выборе приемлемых величин интеграла благосостояния и времени достижения фазовой переменной x^* значения x_2 .

Замечание 3. Приходится сталкиваться с тем мнением, что в рассматриваемой задаче оптимальное управление — это движение по экстремали a_1 , достигающее малую окрестность h сингулярной точки ψ_s , x_s , в окрестности которой начинается равновесный темп роста



размерных макроэкономических параметров по экспоненциальной зависимости. Однако длительное пребывание экономической системы на стационарных траекториях сбалансированного роста (в h-окрестности особой точки (ψ_s , x_s)) мало оправдано, т. к. за время ~ 30 лет могут быть получены значительные результаты в научно-техническом прогрессе и могут появиться новые более эффективные технологии, которые не учитываются в математической модели производственного процесса.

3. Численные исследования

Сделаем два предварительных замечания.

Замечание 1. При отыскании корня ξ уравнения

$$\tau(\psi_2) = T(\psi_2) - T_p = 0 \tag{19}$$

методом половинного деления с наперед выбранной точностью ε процесс деления пополам продолжается до тех пор, пока длина отрезка $b_n - a_n$ станет меньше 2ε . Тогда середина последнего отрезка $\left|\frac{1}{2}(a_n + b_n) - \xi\right| < \varepsilon$. Для контроля выводилось также значение $\tau\left(\frac{1}{2}(a_n + b_n)\right)$.

Метод половинного деления очень прост и надежен: к простому корню он сходится для любых непрерывных функций $\tau(\psi_2)$, в т. ч. и недифференцируемых.

Замечание 2. Метод хорд

$$\psi_{2} = \psi_{2} - \frac{\left(b - \psi_{2}\right)\tau(\psi_{2})}{\tau(b) - \tau(\psi_{2})} \qquad n = 0, 1, ... \qquad (20)$$

$$\psi_{2} = a$$

приводит к последовательности приближенных решений $\left\{ \stackrel{n}{\psi}_{2} \right\}$ $n=0,1,\ldots$, стремящихся к корню .

В нашем случае функциональная зависимость, устанавливающая каждому значению $\psi_2 \in [a,b]$ значение $\tau(\psi_2)$, реализуется довольно сложным оператором – численным решением задачи Коши (17) до момента достижения рассчитываемой экстремалью $x^* = x^*(\psi,\psi_2)$ сечения x_1 . Поэтому вопрос о вычислении производной $\tau(\psi_2)$ довольно

громоздкий и находится в стороне от основного предмета исследования.

Сходимость метода хорд к корню ξ оценивалась по критерию

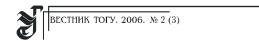
$$\frac{\left|\begin{array}{c} {}^{n+1} & {}^{n} \\ {}^{\psi} {}_{2} - {}^{\psi} {}_{2} \end{array}\right|}{{}^{n}} < \varepsilon_{\psi} \,, \tag{21}$$

где ε_{ψ} — малое, наперед заданное число. Для контроля рассчитывалось также значение $\tau(\psi_2)$.

В таблице представлены результаты вычисления корня уравнения (19) для значений T_p , равных 5, 5.5, 6 лет и 6.3 года.

Результаты расчетов

resymblation pur terop									
	$T_p = 5$			$T_p = 5.5$					
Итера- ции	ⁿ^ψ₂ (методполовин.деления)	ⁿ ₂ (метод хорд)	Итера- ции	" " " " " " " " " " " " " " " " " " "	ⁿ _{Ψ2} (метод хорд)				
1	7.739522	8.215444	1	7.739522	7.837927				
2	8.028448	8.144071	2	7.450596	7.625530				
3	8.172911	8.149141	3	7.595059	7.692888				
4	8.100680		4	7.667291	7.671643				
5	8.136795		5	7.703406	7.678360				
6	8.154853		6	7.685348	7.676235				
7	8.145824		7	7.676320					
8	8.150339		8	7.680834					
9	8.148082		9	7.678577					
10	8.149210		10	7.677448					
11	8.148646		11	7.676884					
12	8.148928		12	7.676602					
13	8.148787		13	7.676743					
14	8.148858		14	7.676672					
$\tau(\psi_2)$	-0.000049	-0.000285	$\tau(\psi_2)$	0.000101	0.000665				



Окончание таблицы

-	$T_p = 6$			$T_p = 6.3$	
Итера- ции	" " " " " " " " " " " " " " " " " " "	ⁿ _{ψ₂} (метод хорд)	Итера- ции	п	" " " " " " " " хорд)
1	7.739522	7.460410	1	7.739522	7.233900
2	7.450596	7.293733	2	7.450596	7.182887
3	7.306133	7.386695	3	7.306133	7.218895
4	7.378365	7.334871	4	7.233902	7.193465
5	7.342249	7.363768	5	7.197786	7.211431
6	7.360307	7.347649	6	7.215844	7.198742
7	7.351278	7.356634	7	7.206815	7.207702
8	7.355792	7.351629	8	7.202300	7.201370
9	7.353535	7.354417	9	7.204557	7.205849
10	7.352406	7.352869	10	7.203429	7.202683
11	7.352971	7.353725	11	7.203993	7.204916
12	7.353253		12	7.203711	7.203343
13	7.353394		13	7.203852	7.204453
14	7.353464		14	7.203923	7.203664
$\tau(\psi_2)$	-0.000069	-0.000564	$\tau(\psi_2)$	0.000149	0.000727

Библиографические ссылки

- 1. *Булгаков В. К., Стригунов В. В.* Решение задачи оптимального управления динамикой региональной экономической системы для конечного горизонта планирования // Вестник ТОГУ. 2006. № 1.
- 2. *Булгаков В. К., Стригунов В. В.* Исследование одной математической модели макроэкономики региона РФ, решение задачи оптимального управления: Препринт № 96 ВЦ ДВО РАН. Хабаровск, 2006.
 - 3. Понтрягин Л. С. Обыкновенные дифференциальные уравнения. М., 1982.
- 4. *Демидович Б. П., Марон И. А.* Основы вычислительной математики. М., 1960.