

УДК 53.082:539.32

© Г. А. Калинов, А. В. Лысаков, В. И. Римлянд, 2010

АВТОНОМНАЯ ИЗМЕРИТЕЛЬНАЯ СТАНЦИЯ СИСТЕМЫ СБОРА ГИДРОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

Калинов Г. А. — директор ООО «Полином», асп. кафедры «Физика», e-mail: polinom@poli.khv.ru ; *Лысаков А. В.* — ведущий инженер ООО «Полином»; *Римлянд В. И.* — проф. кафедры «Физика», e-mail: riml@fizika.khstu.ru (ТОГУ)

Рассмотрена конструкция автономной измерительной станций для контроля параметров жидкости в наблюдательных скважинах системы мониторинга уровня подземных вод. Станция стоит из блока сбора информации, скважинного уровнемера, специального измерительного зонда и работает в автономном автоматическом режиме.

Construction of an autonomous measuring station to control water parameters in wells of the underground water monitoring system is considered. The complex consists of a data acquisition block, a well liquid level indicator, a special measuring probe and operates in an autonomous automatic mode.

Ключевые слова: измерения, мониторинг, уровнемер, ультразвук, микропроцессор, логгер, температура, электропроводность, скважина.

Система сбора гидрологической информации

Долговременный мониторинг уровня подземных вод показал, что изменения уровня воды в скважинах коррелирует с сейсмическими проявлениями различного масштаба [1]. Начиная с 1986 г, в сейсмоопасных зонах Закавказья, Краснодарского края и Дальнего Востока созданы сети специализированных наблюдательных скважин (около 170 скважин), результаты измерения в которых принято называть гидрогеодеформационным полем Земли (ГГД). Планируется дальнейшее развитие системы мониторинга ГГД в РФ, путем увеличения количества наблюдательных скважин, автоматизации процессов измерений и передачи информации. Создание данной системы предполагает контроль на площади сотни и тысячи квадратных километров земной поверхности, при этом для исключения техногенного воздействия наблюдательные скважины размещают вдали от населенных пунктов, что налагает дополнительные требования к надежности, уровню электропотребления и каналам связи.

В данной работе рассматриваются принципы работы и конструкция основных блоков автономной измерительной станции типа «Кедр». Станции устанавливаются на наблюдательных скважинах и осуществляют измерение следующих параметров: уровень воды в скважинах, температуру и электропроводность воды (характеризует степень насыщения подземных вод солями), атмосферное давление. Измерительные станции накапливают информацию и передают ее на центральный узел системы — в прогностический Центр, где осуществляется сбор, накопление и хранение информации со всех станций, а также анализ информации о ГГД поле. Режим непрерывного мониторинга предполагает опрос измерительных комплексов один раз в сутки. Измерение параметров станциями производится один раз в час. Требования к блокам измерения параметров воды в скважинах достаточно высокие в части точности и разрешающей способности [2].

В разработанной информационно-измерительной системе информация со скважинных измерительных станций передается по каналам сотовой связи или в случаи невозможности приема сотовых операторов используются средства спутниковой связи на основе низкоорбитальной группировки системы «GlobalStar». В первом случае пакетная передача данных осуществляется с использованием модема с встроенными средствами GPRS. Применяются модемы для сотовой связи TC65 Terminal фирмы Siemens, которые работают в диапазоне GSM 850/900/1800/1900МГц при температуре окружающего воздуха $-30 \div +70$ °C. Во втором – используется пакетная передача данных, которая обеспечивает доступ через станцию сопряжения к ресурсам сети Internet. Для передачи данных по каналам спутниковой связи применяется модем GSP-1720, который обеспечивает двухстороннюю связь со скоростью 9600 бит/с.

В качестве измерительных станций разработаны два типа комплексов «Кедр» и «Кедр-А2», предназначенных для измерения параметров воды в наблюдательных скважинах и сбора информации без применения телеметрии. Результаты измерений хранятся в переносном модуле энергонезависимой памяти. Передача информации выполняется посредством смены накопителя и считывания данных в ПК, информация в прогностический Центр в данном случаи поступает с задержкой в 10–20 дней. «Кедр-ДМ» имеет телеметрический канал на основе сотовой или спутниковой связи.

Блок сбора информации

Центральным узлом измерительного комплекса «Кедр» является блок сбора информации (БСИ). По функциональному назначению БСИ представляет собой специализированный регистратор данных (логгер) и обычно расположен на поверхности Земли в оголовке скважины. На рис. 1 представлена функциональная схема БСИ. Программное управление логгеров и специализированными датчиками осуществляется микропроцессором 1 серии AVR типа ATMEGA128. В исходном состоянии микропроцессор БСИ всегда находится в «спящем» режиме. В «спящем» режиме БСИ потребляет от источника

+12В не более 70 мкА, что существенно, так как в автономном режиме логгер должен находиться не менее одного года. При воздействии сигналов от кнопок управления выносного индикатора 2 или от минутных импульсов встроенных часов 3 процессор активизируется и вызываются соответствующие программы, которые либо переводят логгер в режим работы с индикатором или в режим проверки текущего времени. Если текущее время совпадает с заданным временем измерения, то логгер производит опрос измерительных датчиков, заносит результаты в накопитель 4, осуществляет сеанс связи и снова переходит в режим пониженного энергопотребления.

Информация с датчика уровня через драйвер 5 интерфейса RS-485 по специальному кабелю передается на процессор; аналогично подключен глубоководный зонд с датчиками электропроводности и температуры воды. Атмосферное давление измеряется датчиком 6, установленным на плате БСИ, и 16-разрядным АЦП 7, подключенным к микропроцессору.

Средствами встроенного протокола I^2C (TWI – Two Wire Interface) осуществляется считывание данных с датчика температуры 8, установленного на плате логгера.



Рис. 1. Функциональная схема блока БСИ

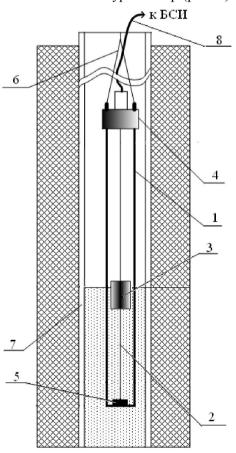
В микропроцессоре присутствует 8-канальный 10-разрядный АЦП. Один вход встроенного АЦП используется для измерения значения уровня напряжения батареи питания 9, второй и третий — для измерения токов потребления в соответствующем измерительном канале с помощью блоков управления питанием первого (10) и второго каналов (11). Управление сотовым и спутниковым модемами 12 осуществляется средствами интерфейса RS-232 — конвертор 13 (UART - RS-232). К блоку БСИ может подключаться внешний индикатор, позволяющий тестировать систему, опрашивать все датчики, ус-

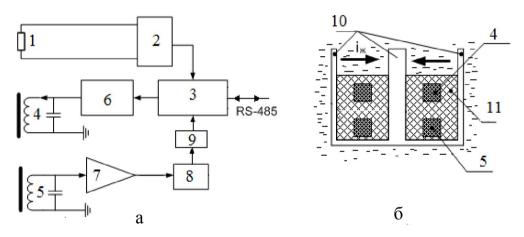
танавливать параметры измерений и связи. БСИ обеспечивает минимизацию электропотребления всеми устройствами и защиту от короткого замыкания.

Измерение уровня воды

Уровень воды в скважине измеряется с помощью высокоточного ультразвукового поплавкового уровнемера. Уровнемер работает на основе разработанного авторами метода [3]. Ранее, на основе данного метода, был создан ультразвуковой уровнемер для измерения уровня жидкости в резервуарах большой вместимости [4]. Уровень жидкости рассчитывается на основе измерения времени прохождения ультразвукового импульса (УЗИ) в вертикальном звукопроводе, в виде тонкого металлического стержня, при этом акустический импульс формируется непосредственно на границе раздела жидкость-воздух.

Скважинный уровнемер (рис. 2) состоит из корпуса 1 – защитной тонко-

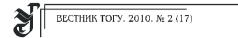



Рис. 2. Скважинный уровнемер

стенной трубы диаметром 51 мм длинной 3 м; вертикального стержнязвукопровода 2, натянутого в центре трубы; поплавка-излучателя УЗИ 3, коаксиально охватывающего стержень и свободно перемещающегося вдоль него; блока питания, синхронизации и приема УЗИ 4, укрепленного на верхнем конце стержня; эталонного излучателя УЗИ 5, укрепленного на нижнем конце стержня. Уровнемер опускается на специальном тросе 6 в скважину 7, связь с БСИ осуществляется по кабелю 8. Эталонный излучатель УЗИ позволяет проводить автоматическую калибровку акустического тракта системы и значительно повышает точность измерения уровня [5]. Уровнемер имеет следующие метрологические характеристики: диапазон измерения уровня – до 3 м; разрешающая способность датчика уровня - 0,2 мм; основная погрешность измерения уровня – 0,5 %; рабочий диапазон температур - 0 ÷ $+80\,^{\circ}$ С; габаритные размеры $-51\,\div$ 3180 мм; масса – 3,5 кг. Более подробно работа уровнемера описана в работах [6, 7]

Измерительный зонд

Как указывалось выше, кроме уровня жидкости в скважине необходимо измерение температуры воды и содержание солей в воде. С этой целью был разработан специальный измерительный зонд. Глубина установки зонда относительно поверхности земли может варьироваться в широких пределах от 10 до 1000 м. При этом работа зонда не должна зависеть от длины кабеля. В связи с этим целесообразно цифровую обработку аналоговых сигналов проводить непосредственно в точке измерения, а по кабелю передавать информацию в виде цифровых кодов интерфейса RS-485.


На рис. 3, а, 3, б представлены функциональная схема зонда и конструкция датчика проводимости. В качестве датчика температуры 1 применяется платиновое сопротивление типа Platinum RTDs 1000, подключенное к АЦП 2 (АD7788, 16 разрядный малошумящий сигма-дельта преобразователь с дифференциальным входом).

Puc. 3. Глубоководный зонд: а – функциональная схема, б – конструкция датчика проводимости

Управление устройством выполняется встроенным микропроцессором 3 средствами SPI — интерфейса. Расчет температуры производится микропроцессором по специальному алгоритму с погрешностью не более 0,5 % в диапазоне изменения температуры $0\div100\,^{\circ}\mathrm{C}$.

Датчик проводимости основан на индукционном способе, который был предложен авторами работы [8]. Конструкция датчика представляет собой систему двух соосно расположенных тороидальных катушек индуктивности 4 и 5, охваченных общей петлей связи в виде элементов корпуса датчика 10 и жидкостного проводника контролируемой среды. Для повышения электрической чувствительности и снижения электрических помех, обусловленных индуктивными и емкостными связями, приемная катушка находится в незамкнутом экране. Таким образом, у датчика проводимости фактически отсутст-

вуют электроды, а электрическая схема не имеет непосредственного контакта с жидкостью, что позволяет использовать его в жестких полевых условиях и на больших глубинах. Работа датчика проводимости заключается в возбуждении в излучающей катушке генераторам 6 напряжения частотой 100 кГц, которая формирует переменное электромагнитное поле. Вторичное электромагнитное поле вихревых токов возбуждает в приемной катушке 4 ЭДС, величина которого пропорциональна электропроводности жидкости, в которую погружен датчик. ЭДС с катушки поступает на усилитель 7, детектор 8 и через АЦП 9 на микропроцессор. Схема формирует постоянное напряжение прямо пропорционально проводимости в диапазоне от 10 мВ до 3,3 В. Оцифрованные значения температуры и проводимости по запросу передаются в блок сбора информации.

В настоящее время ООО «Полином» освоено опытное производство и монтаж измерительных станций для мониторинга ГГД поля Земли. Изготовлено 124 системы, установленных в различных регионах РФ.

Библиографические ссылки

- 1. *Гидрогеологические* методы при изучении тектонических напряжений / Г. С.Вартанян, Д. Бредехофт, Э. А. Роэллоффе // Советская геология. 1992. № 9.
- 2. *Методические* указания по ведению гидрогеодеформационного мониторинга для целей сейсмопрогноза (система R-STEP) / сост. Г. С. Вартанян, В. С. Гончаров, В. П. Кривошеев, Э. П. Потемка, С. К. Стажило-Алексеев. М., 2000.
- 3. *Способ* ультразвукового измерения уровня жидкости / Г. А. Калинов, А. В. Лысаков, В. И. Римлянд. Патент РФ № 2156962, 2000.
- 4. *Автоматизированная* система измерения уровня жидкости в резервуарах / В. И. Римлянд, А. В. Казарбин, Г. А. Калинов // Известия вузов. Приборостроение. 2000. № 3.
- Способ ультразвукового измерения уровня жидкости / Г. А. Калинов,
 А. В. Лысаков, Д. Г. Калинов. Патент РФ № 200612394. 2006.
- 6. *Методы* диагностики и контроля динамических объектов / В. И. Римлянд, А. И. Кондратьев, Г. А. Калинов, А. В. Казарбин. Хабаровск, 2006.
- 7. *Акустический* тракт автоматизированной системы измерения уровня жидкости в резервуарах / В. И. Римлянд, Г. А. Калинов // Акустические измерения, геоакустика, электроакустика, ультразвук : сб. тр. XI сессии Рос. акуст. общ. М., 2001.
- 8. *Высокочувствительный* датчик электропроводности бурового раствора / Р. М. Аметшин, М. Г. Лугуманов // Вестник «Каротажник». 2003. Вып. 111–112.