ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

УДК 538.9

© Е.В. Солодовник, 2011

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СИЛОВОГО ПОЛЯ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ Hg2Hal2

Солодовник Е.В. – канд. физ.-мат. наук, доцент каф. «Теоретическая механика», тел. 8-909-852-71-15, e-mail: esolodovnik@yandex.ru (ТОГУ)

Новая группа монокристаллов Hg_2Hal_2 (Hal = Cl, Br, I) обладает уникальными физическими свойствами благодаря своему цепочечному строению. Такое строение обусловлено особенностью межатомных взаимодействий, природа которых окончательно не выяснена. Динамические свойства колебаний атомов решетки описываются на основе матрицы силовых постоянных в рамках приближения валентно-силового поля. Определение значений силовых постоянных является одной из проблем моделирования динамики кристаллических решеток. В данной работе приведен набор силовых постоянных, полученных на основе модели валентно-силового поля для кристаллов Hg_2Hal_2 , сделана попытка анализа и обоснования полученных результатов.

A new group of Hg₂Hal₂ (Hal = Cl, Br, I) crystals has unique physical properties due to their chain structure. This structure is dictated by the feature of interatomic interactions, whose nature is not fully elucidated. Dynamic properties of lattice vibrations are described on the basis of the force constant matrix in the framework of the valence force field. The determination of the force constants values is one problem of the modeling of the crystal lattice dynamics. In this paper we present a set of force constants which were obtained with the valence force field for Hg₂Hal₂ crystals. Also, justification of the results obtained has been done.

Ключевые слова: галогениды одновалентной ртути, динамика кристаллической решетки, численное моделирование, модель валентно-силового поля, силовые постоянные.

Монокристаллы галогенидов одновалентной ртути Hg₂Hal₂ (Hal = Cl, Br, I) являются новой группой материалов, синтезированных в 1970 году чехословацким ученым Ч. Бартой в виде искусственных монокристаллов [1]. Большая величина анизотропии ряда физических свойств этого класса кристаллов является фактором, определяющим практическую ценность этих материалов. ВЕСТНИК ТОГУ. 2011. № 1 (20)

Рис. 1. Кристаллическая решетка галогенидов одновалентной ртути, а и с – параметры решетки

Кристаллическая решетка галогенидов одновалентной ртути при комнатной температуре состоит из параллельно расположенных линейных четырехатомных цепочек -Hal-Hg-Hg-Hal [2] (рис. 1). Особенностью кристаллов Hg₂Hal₂ является наличие сильных ковалентных связей внутри цепочек и слабых ван-дер-ваальсовых сил между цепочками. Цепочечное строение кристаллов Hg₂Hal₂ и определяет сильную анизотропию физических свойств [3].

К настоящему времени опубликовано большое число работ, посвященных экспериментальным исследованиям колебательных спектров галогенидов одновалентной ртути. Для расчета динамических свойств кристаллических решеток Hg₂Hal₂ и макроскопических упругих характеристик в работе [4] нами был предложен метод на основе единой модели потенциальной функции.

Модельные расчеты динамических свойств решетки Hg₂Hal₂ базировались на теории Борна [5], центральным объектом которой является динамическая матрица кристаллической решетки. Динамические свойства колебаний атомов решетки описываются на основе матрицы силовых постоянных. Определение этих величин является основной проблемой моделирования динамики кристаллических решеток. Была представлена [4] модель расчета потенциальной функции кристаллических решеток Hg₂Hal₂ в рамках приближения валентносилового поля.

Целью данной работы является описание полученного набора силовых постоянных для кристаллов Hg_2Hal_2 (Hal = Cl, Br, I), обоснование и анализ полученных результатов.

Полуэмпирический характер теории колебаний молекул определяет необходимость использования экспериментальных данных о частотах и о формах нормальных колебаний. Эта задача носит название обратной спектральной задачи. При расчете использовались экспериментальные значения частот, полученные для Г-, Х-, Δ- точек зоны Бриллюэна (ЗБ) кристаллов Hg₂Hal₂ [6–11], а также значения скоростей звука, полученные для различных кристаллографических направлений [12–13].

Основным способом нахождения значений силовых постоянных в настоящее время является варьирование этих величин для получения наилучшего согласия модельных результатов с экспериментальными данными.

Матрица силовых постоянных V_{kl} описывает микроскопические упругости отдельных фрагментов решетки (при k=l) или динамические взаимодействия между ними (при $k\neq l$):

$$V_{kl} = \frac{\partial^2 \Phi}{\partial s_k \partial s_l}$$

Силовые постоянные, соответствующие исходному базису естественных координат, являются элементами матрицы V_{kl} . Для определения дисперсионных зависимостей колебательного спектра кристаллов галогенидов одновалентной ртути были введены следующие силовые постоянные (СП) (рис.2): k_l - k_8 , соответствующие диагональным двухцентровым взаимодействиям, b_l - b_3 – диагональным трехцентровым взаимодействиям, h_l - h_2 – недиагональным многоцентровым взаимодействиям, которые наилучшим способом согласуются с экспериментальными данными.

СП k_1 - k_3 описывают двухатомные взаимодействия вдоль цепочек; СП k_4 - k_6 описывают ближайшие взаимодействия в плоскости (110); СП b_1 описывает взаимодействия в линейных углах Hall-Hg2-Hg3 и Hg2-Hg3-Hal4 (рис. 2a); СП k_7 и k_8 описывают взаимодействия атомов Hal-Hal и Hg-Hg в плоскости (100) (рис. 2б); СП b_2 описывает угловые взаимодействия Hall-Hall-Hg3, Hal4-Hal4-Hg2, b_3 – угловые взаимодействия Hg2-Hg2-Hal4, Hg3-Hg3-Hal1 (рис. 2в); недиагональная СП h_1 описывает взаимодействия связей Hal1-Hal1 и Hal1-Hg3, Hal4-Hal4 и Hal4-Hg2, СП h_2 – взаимодействия связей Hg2-Hg2 и Hg2-Hal4, Hg3-Hg3 и Hg3-Hal1, имеющих общий атом.

При определении значений СП учтены некоторые свойства силовых постоянных, выполнение которых необходимо для построения непротиворечивой динамической модели [14]:

1) так как потенциальная энергия атомов, смещенных из положения равновесия, всегда больше энергии равновесной конфигурации, принимаемой за нуль, все диагональные элементы V_{kl} 0.

2) число силовых постоянных ограничено вследствие убывания взаимодействий по мере удаления атомов друг от друга. В нашей задаче учитываются взаимодействия 32 атомов восьми ближайших соседних ячеек. ВЕСТНИК ТОГУ. 2011. № 1 (20)

Puc. 2. Силовые постоянные кристаллической решетки Hg₂Hal₂

Для подбора значений силовых постоянных нами определены зависимости расчетных параметров от силовых постоянных как производные от предельных частот v_i и от скоростей звука по параметрам потенциальной функции Hg₂Cl₂.

Так оказалось, что значения СП k_4 и k_5 ограничиваются их очень сильным влиянием на частоту v_1 (40 см⁻¹), а значения СП k_7 и k_8 сильным влиянием на частоту мягкой моды в Х-точке ЗБ (6,3 см⁻¹). Мягкая мода в Х-точке ЗБ практически определяется СП k_7 и k_8 . На частоту $v_{\rm MM}$ в Δ -точке (6,5 см⁻¹) кроме СП k_7 и k_8 влияют также СП b_2 и b_3 . На скорости продольной и поперечной звуковых волн $\mathcal{D} \begin{bmatrix} 100\\ 100 \end{bmatrix}$ и $\mathcal{D} \begin{bmatrix} 100\\ 010 \end{bmatrix}$ в базисной плоскости оказывают сильное влияние СП k_4 , k_5 и k_6 . Недиагональные СП h_1 и h_2 позволяют получить необходимую дисперсию и сопоставить расчетные и экспериментальные значения частот для продольной акустической ветви.

СП k_1 , k_2 и k_3 оказывают влияние только на продольные колебания в направлении оси z. Деформационная СП b_1 абсолютно не влияет на колебания в направлении оси z, преимущественно влияет на частоты v_2 (E_g) и v_5 ($E_u^{\text{LO-TO}}$). Ввиду того, что влияния СП k_6 и k_7 , а также b_2 и b_3 , h_1 и h_2 на параметры колебательного спектра идентичны, мы решили возможным при расчете принять $k_6 = k_7$, $b_2 = b_3$, $h_1 = h_2$. Расчет колебательного спектра и силовых констант для кристаллов Hg₂Cl₂, Hg₂Br₂, Hg₂I₂ проводился таким образом, чтобы получить наилучшее соответствие расчетных и экспериментальных значений частот колебательного спектра в Г-точке ЗБ и скоростей упругих волн.

Значения силовых постоянных, позволяющих получить наилучшее приближение расчетных данных к экспериментальным, для кристаллов Hg2Cl2, Hg2Br2 и Hg2I2 приведены в табл. 1.

Силовые постоянные для кристаллов Hg₂Hal₂

Таблица 1

		Значения СП*				
СП	Связи	Hg ₂ Cl ₂	Hg_2Br_2	Hg_2I_2		
k_{l}	Hg2-Hg3	1,9	1,6	1,3		
k_2	Hg2-Hal1	1,15	1,10	1,02		
	Hg3-Hal4	1,15	1,10	1,02		
k_3	Hal1- Hal4	0,008	0,050	0,100		
k_4	Hg2- Hal4	0,010	0,018	0,030		
	Hg3-Hal1	0,010	0,018	0,030		
k_5	Hal1-Hal4	0,002	0,002	0,001		
k_6	Hg2-Hg3	0,17	0,13	0,10		
k_7	Hal1-Hal1	0,00070	0,00040	0,00035		
	Hal4-Hal4	0,00070	0,00040	0,00035		
k_8	Hg2-Hg2	0,00070	0,00040	0,00035		
	Hg3-Hg3	0,00070	0,00040	0,00035		
h_{I}	$k_4 - k_7$	0,0035	0,0025	0,0017		
h_2	$k_4 - k_8$	0,0035	0,0025	0,0017		
b_I	Hal1-Hg2-Hg3	8,5	4,3	3,1		
	Hg2-Hg3-Hal4	8,5	4,3	3,1		
b_2	Hal1-Hal1-Hg3	0,09	0,07	0,07		
	Hal4-Hal4-Hg2	0,09	0,07	0,07		
b_3	Hg2- Hg2- Hal4	0,09	0,07	0,07		
	Hg3- Hg3- Hal1	0,09	0,07	0,07		

* Значения силовых постоянных приведены в следующих единицах: $k_1 - k_8$, $h_1 - h_2 - B 10^5$ дин/см; $b_1 - b_3 - B 10^{-12}$ дин-см

Полученные результаты согласуются со структурными особенностями исследуемых кристаллов. СП k_1 , k_2 , b_1 , соответствующие внутримолекулярным взаимодействиям, значительно превышают остальные СП, что отвечает ковалентному характеру внутримолекулярной связи и слабым взаимодействиям между молекулами [9]. СП k_6 , соответствующая двухатомным взаимодействиям Hg-Hg в плоскости (110), оказалась на один-два порядка больше СП k_4 - k_5 . Это можно объяснить тем, что одной из особенностей галогенидов одновалентной ртути является редко встречающаяся среди металлов стабильная связь Hg-Hg.

В табл. 2 приведены расчетные значения частот колебательного спектра Hg₂Hal₂ в особых точках ЗБ и их сравнение с экспериментальными значениями [6–11].

В табл. 3 приведены расчетные и экспериментальные [12–13] значения скоростей упругих волн.

Солодовник Е. В.

Таблица 2

ВЕСТНИК ТОГУ. 2011. № 1 (20)

Колебания и их	Hg_2Cl_2		Hg_2Br_2		Hg_2I_2			
симметрия	Экспе-	Расчет	Экспе-	Расчет	Экспе-	Расчет		
	римент		римент		римент			
	Г-точка ЗБ							
$v_1(E_g)$	40	48	36	40	30	35		
$v_2(E_g)$	137	137	91	91	74	75		
$v_3(A_{1g})$	167	167	135	129	113	105		
v_4 (A _{1g})	275	274	221	223	192	197		
$v_5(E_u^{\text{LO-TO}})$	75	94	66	55	48	47		
$v_6(A_{2u}^{LO-TO})$	254	256	197	183	150	149		
Х-точка ЗБ								
$v_1(B_{2g})$	45	51	41	41	-	36		
$v_2(B_{2g})$	148	137	-	92	-	76		
$v_3(A_g)$	163	163	133	127	-	104		
$v_4 (A_g)$	288	273	225	220	-	194		
$v_5(B_{3u})$	72	95	52	56	-	37		
$v_5(B_{2u})$	144	96	97	58	-	48		
$v_6(B_{1u})$	265	256	176	184	-	151		
$TA_1(B_{3u})$	6,3	6,3	-	4,4	-	3,8		
$TA_2(B_{1u})$	39	47	35	38	-	30		
	Р-точка ЗБ							
$TA_{1}(E)$	12,5	14,5	-	-	-	-		
	Z-точка ЗБ							
$TA_{1}(E_{u})$	25	17,8	-	-	-	-		
	∆-точка ЗБ							
$TA_1(B_1)$	6,5	6,5	-	-	-	-		

Сравнение расчетных и экспериментальных [6-11] значений частот колебательного спектра Hg2Hal2 в особых точках 3Б (см⁻¹)

Таблица З

Сравнение расчетных и экспериментальных значений скоростей звука Hg2Hal2 (105 см/сек)

Скорость	Hg ₂ Cl ₂		Hg_2Br_2		Hg_2I_2	
звука	Эксперимент	Расчет	Эксперимент	Расчет	Эксперимент	Расчет
$\upsilon \left[\begin{smallmatrix} 001 \\ 001 \end{smallmatrix} ight]$	3,343	3,384	3,487	3,484	3,725	3,678
$\upsilon \left[\begin{smallmatrix} 110 \\ 110 \end{smallmatrix} ight]$	2,054	2,011	1,914	1,801	1,790	1,736
$\upsilon \begin{bmatrix} 110\\ 1\overline{1}0 \end{bmatrix}$	0,347	0,348	0,282	0,283	0,253	0,253
$\upsilon \begin{bmatrix} 100\\100 \end{bmatrix}$	1,622	1,628	1,487	1,448	1,361	1,351
$\upsilon \begin{bmatrix} 100\\010 \end{bmatrix}$	1,305	1,261	1,249	1,188	1,204	1,176
$\upsilon \begin{bmatrix} 100\\001 \end{bmatrix}$	1,084	0,905	1,008	0,860	0,871	0,946

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СИЛОВОГО ПОЛЯ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ НG2HAL2

Наблюдается хорошее соответствие расчетных величин экспериментальным данным по частотам и скоростям звука.

СП k_7 , k_8 , b_2 , b_3 , h_1 , h_2 главным образом влияют на акустические колебания в плоскости (001). СП k_7 (Hal1-Hal1 и Hal4-Hal4), k_8 (Hg2-Hg2 и Hg3-Hg3) не изменяют частоты колебаний в центре зоны Бриллюэна (так как эти постоянные описывают взаимодействия пар атомов, разделенных постоянной решетки). Введение недиагональных СП h_1 , h_2 позволило добиться необходимой дисперсии продольной акустической ветви в направлении оси х и получить значение скорости звука $U \begin{bmatrix} 100\\ 100 \end{bmatrix}$, близкое к экспериментальному (рис. 3).

Рис. 3. Дисперсионная зависимость поперечного акустического (TA₁) колебания в направлении Г–Х для кристалла Hg₂Cl₂

Были рассчитаны дисперсионные зависимости кристаллов Hg₂Hal₂. На рис. 3 показана дисперсионная ветвь (TA₁) низкочастотного поперечного акустического колебания в направлении Г-Х, рассчитанного для кристалла Hg₂Cl₂.

Темными кружочками обозначены частоты, полученные по данным неупругого рассеяния нейтронов [6]. Пунктирная линия построена по экспериментальным значениям скорости звука [7]. Сплошная линия – результаты расчета.

Хорошее соответствие результатов расчета экспериментальным данным позволяет предположить, что предложенная потенциальная функция надежно описывает динамические свойства решеток Hg₂Hal₂ и может быть использована для моделирования колебательного спектра.

Библиографические ссылки

1. Barta C. Preparation of Mercury Chloride Monocrystals. Crystal and Technik. 1970. V. 5. № 4. P.

2. *Mark H., Steinbach I.* Uber das Raumgitter und die Doppelbrechung des Kalomel // Zs.f.Kristallogr. – 1926. –V. 64.

ВЕСТНИК ТОГУ. 2011. № 1 (20)

3. International Symposium on Mercury (I) Halides: Proceeding. – Liblice. Czechoslovakia. – 1976.

4. *Моделирование* динамических свойств кристаллов Hg₂Hal₂ (Hal = Cl, Br, I) / Задохин Б. С., Солодовник Е. В. // ФТТ. – 2004. – Т. 46. – Вып. 11.

5. Борн М., Хуан Кунь. Динамическая теория кристаллических решеток. – М.: ИЛ., 1958.

6. *Petzelt J., Mayerova I.* Polar optic phonons in Hg_2Cl_2 and Hg_2Br_2 // Czech. J. Phys. V. B. 23. No 8. 1973.

7. Барта Ч., Лимонов М. Ф., Марков Ю. Ф. Спектры инфракрасного отражения монокристаллов Hg₂Cl₂ // ФТТ. – Т. 20. – № 12. – 1978.

8. Барта Ч., Лимонов М. Ф., Марков Ю. Ф., Нахабцев Д. В. Спектры инфракрасного отражения монокристаллов Hg₂Br₂ // Оптика и спектроскопия. – 1983. – Т. 55. № 3.

9. Petzelt J., Matyas M., Kroupa J., Barta C. Far infrared properties of Hg₂I₂ single crystals // Czech. J. Phys. 1978. V. B. 28.

10. Барта Ч., Каплянский А. А., Марков Ю. Ф. Спектры комбинационного рассеяния монокристаллов Hg₂Cl₂ и Hg₂Br₂ // ФТТ. – 1973. – Т. 15. № 9.

11. Барта Ч., Каплянский А. А., Кулаков В. В., Марков Ю. Ф. Спектры комбинационного рассеяния I и II порядков монокристаллов Hg₂Cl₂, Hg₂Br₂, Hg₂I₂ // Оптика и спектроскопия. – 1974. – Т. 37. – № 1.

12. Barta C., Silvestrova I. M., Pisarevskii Ju. V., Moiseeva N. A., Beljaev L. M. Acoustical Properties of Single Crystals of Mercury Halides // Crystal and Technik. 1977. – V 12. – \mathbb{N}_{2} 9.

13. Сильвестрова И. М., Барта Ч., Добржанский Г. Ф., Беляев Л. М., Писаревский Ю. В. Упругие свойства Hg₂Cl₂ // Кристаллография. – Т. 20. – № 2. – 1975.

14. Волькенштейн М. В., Ельяшевич М. А., Степанов Б. И. Колебания молекул. – Л.: ОНТИ, 1949.