

УДК 538.915

© А. Н. Чибисов, М. А. Чибисова, 2012

ВЛИЯНИЕ ПРИМЕСНЫХ АТОМОВ НА АТОМНУЮ И ЭЛЕКТРОННУЮ СТРУКТУРУ НАНОПОРИСТЫХ СИЛИКАТОВ

Чибисов А. Н. – канд. физ.-мат. наук, старший научный сотрудник, e-mail: andreichibisov@yandex.ru (ВЦ ДВО РАН); *Чибисова М. А.* – канд. физ.-мат. наук, научный сотрудник, e-mail: omariya2003@yandex.ru (ВЦ ДВО РАН)

С использованием ab initio метода расчета смоделировано влияние каталитически активных центров железа и фтора на атомную и электронную структуру нанопористых силикатов SiO₂ и Mg₃Si₄O₁₀(OH)₂. Показано, что внедрение примесных атомов приводит к уменьшению ширины запрещенной зоны.

Simulation of the effect catalytically active centers of iron and fluorine substitutions on the atomic and electronic structure of the nanoporous SiO_2 and $Mg_3Si_4O_{10}(OH)_2$ silicates were carried out using ab initio calculation method. It was shown that doping into the lattice impurity atoms reduces the band gap.

Ключевые слова: нанопористые силикаты, атомная и электронная структура, ab initio метод.

Введение

Нанопористые силикаты широко используются в нефтехимии, катализе и оптоэлектронике в качестве фильтров, катализаторов, оптических покрытий и т.п. Структура нанопористых силикатов представляет собой упорядоченное распределение непересекающихся каналов в матрице оксида кремния с толщиной стенок порядка 1 нм. Модификация структуры силикатов примесными ионами, позволяет эффективно изменять их электронную структуру, что приводит к изменению физико-химических свойств. Кроме того внедрение в нанопористые силикаты органических соединений, позволяет использовать данные материалы в качестве сорбентов, полимерных наполнителей и химических сенсоров. Предыдущие работы показывают, что перспективными материалами для создания таких неорганически-органических нанокомпозитов являются мезопористый SiO₂ и природный тальк [1, 2].

В данной работе будет показано, как примесные ионы железа и фтора влияют на электронную структуру нанопористых силикатов.

ВЕСТНИК ТОГУ. 2012. № 3 (26)

Методы и детали расчетов

Расчеты выполнялись с помощью пакета ABINIT [3] с применением высокопроизводительных вычислений. Псевдопотенциалы для атомов Si, O, H, Mg, F и Fe в обобщенно – градиентном приближении (GGA) подбирались с помощью пакета программ fhi98PP [4]. Атомная релаксация проводилась до значения межатомных сил - 0.025 эB/Å. Анализ атомных структур производился с помощью программы VESTA [5].

Результаты расчетов и их анализ 1. Внедрение железа в SiO₂

В качестве модели для расчета атомной и электронной структуры нанокомпозита Fe/SiO₂, по аналогии с работами [6,7], была выбрана поверхность (111) объемного β – кристаболита SiO₂. Этот выбор обусловлен, прежде всего, тем фактом, что поверхность (111) β – кристаболита характеризуется наличием \equiv Si-OH групп, а, как известно из литературных данных [8] мезопористые силикатные матрицы SiO₂ характеризуются как раз наличием на поверхности групп Si-OH.

Для моделирования аморфной стенки мезопористого SiO_2 строился слаб $Si_{16}O_{32}$ (рис. 1), более подробное описание атомной структуры приведено в работе [6].

Рис. 1. Атомная структура аморфной стенки мезопористого SiO₂

Как показано в работах [6, 9], примесные атомы, замещающие атом кремния, могут находиться в тетраэдрическом окружении на поверхности пор в одном из следующих положений: І вариант - $(OH)-X-(OSi)_3$ или II вариант - $X-(OSi)_4$ (где X – примесные атомы). Внедрение в слаб Si₁₆O₃₂ примесных атомов Fe, изоморфно замещающих Si, также осуществлялось в позициях I и II. Концентрация примесных атомов по отношению к атомам кремния составляла X/Si = 1/15. Для зоны Бриллюэна в случае слаба использовался набор 4 k –точек [10].

Сначала рассмотрим геометрию атомной структуры чистого мезопористого силиката SiO₂. Среднее значение длины связей Si–O в тетраэдрах, расположенных на поверхности аморфной стенки составило 1,633 Å, в то время

как в объемных тетраэдрах оно равнялось 1,637 Å. В связях Si–O–H среднее значение длины связей Si–O увеличивается до 1,651 Å. При этом величина угла \angle (Si–O–H) равняется 113,599°, а длина связи d(O–H)=0,976 Å. Объем поверхностных и объемных тетраэдров SiO₄ составил соответственно 2,274 Å³ и 2,249 Å³. Все полученные результаты расчета геометрии атомной структуры SiO₂ представлены в таблице 1, где через параметры s и v обозначены соответственно поверхностные и объемные значения.

Таблица 1

Геометрия атомной структуры	чистого мезопористого	силиката SiO ₂ ,	а также нано-
	композита Fe/SiO ₂		

Геометрия атомной струк- туры	SiO_2	Fe/SiO ₂
$\begin{array}{c} V_{SiO4}(s), {\rm \AA}^{3} \\ V_{SiO4}(v), {\rm \AA}^{3} \\ V_{XO4}, {\rm \AA}^{3} \\ d(Si{-}O)(s), {\rm \AA} \\ d(Si{-}O)(v), {\rm \AA} \\ d(X{-}O), {\rm \AA} \\ d(O{-}H), {\rm \AA} \end{array}$	2,274 2,249 1,633 1,637 0,976	2,272 2,257 2,825 1,644 1,639 1,808 0,987

Прежде чем приступить к оценке влияния каталитически активных центров Fe на атомную и электронную структуру мезопористой силикатной матрицы, необходимо определиться с тем, какое структурное положение примесных ионов будет энергетически наиболее выгодным для полученной системы. Для этого атомы Fe поочередно помещались в позиции I - $(OH)-X-(OSi)_3$ и II - $X-(OSi)_4$. Сравнение полной энергии атомных систем при помещении примесных ионов в позиции I и II показало, что для иона Fe энергетически наиболее выгодной является позиция I - $(OH)-Fe-(OSi)_3$ (рис. 1).

Внедрение примесных ионов в тетраэдрические позиции аморфной стенки мезопористого силиката приводит к существенным изменениям геометрии атомной структуры чистого SiO₂. В нанокомпозите Fe/SiO₂ среднее значение длины связи Si–O значительно увеличивается, как в объемных, так и в поверхностных тетраэдрах до значений 1,639 Å и 1,644 Å соответственно. Длина связи Fe–O имеет величину порядка 1,808 Å (табл. 1). Объем тетраэдра FeO₄ составил V_{FeO4}=2,825 Å³, что существенно превосходит значение объема тетраэдров чистого мезопористого силиката SiO₂. Что касается длины связи O–H, то она также увеличивается до значения d(O–H)=0,987 Å. Все результаты расчета геометрии атомной структуры нанокомпозита Fe/SiO₂ также сведены в таблицу 1, где через X обозначены примесные ионы.

Теперь необходимо оценить влияние примесных ионов Fe на электронную структуру мезопористой силикатной матрицы SiO_2 . Согласно нашим расчетам, ширина запрещенной зоны E_g чистого SiO_2 составила 5,03 эВ [6]. Замещение в оксиде кремния иона Si ионом Fe вызывает локальную нехватку ВЕСТНИК ТОГУ. 2012. № 3 (26)

электронов для насыщения связей кислорода, что приводит к возникновению нового пика (рис. 2). Ширина запрещенной зоны существенно уменьшается до величин порядка 1,84 эВ и 2,28 эВ со спином вверх и вниз соответственно.

Плотность электронных состояний, электрон/эВ/ячейка

 $Puc.\ 2.$ Полная плотность электронных состояний мезопористого SiO_2: a – SiO_2 легированный железом (с указанием направления спина), b – чистый SiO_2, $E_{\rm F}$ – уровень Ферми

Необходимо также отметить тот факт, что ионный радиус железа по сравнению с ионным радиусом кремния больше в $r_{Fe}/r_{Si}=2,051$ раза, следовательно, внедрение иона Fe приводит к большему увеличению межатомного расстояния Fe-O, по сравнению с расстоянием Si-O (табл. 1).

2. Внедрение фтора в Mg₃Si₄O₁₀(OH)₂

В качестве модели для нанопористого силиката $Mg_3Si_4O_{10}(OH)_2$ мы взяли триклинную решетку с пространственной группой C-1 для минерала талька [11]. В этом случае элементарная ячейка состоит из двух формульных единиц (Z = 2), содержит 42 атома и включает двумерную периодическую слоистую структуру, содержащую слой из связанных ребрами октаэдров MgO_6 упакованных между двумя Si_2O_5 слоями (рис. 3).

Полная релаксация атомной системы для кристалла $Mg_3Si_4O_{10}(OH)_2$ дает следующие значения параметров элементарной ячейки a = 5.326 Å, b = 9.233 Å и c = 9.677 Å; углы составляют $\alpha = 90.64^\circ$, $\beta = 98.68^\circ$, $a \gamma = 90.08^\circ$. Сравнение рассчитанных параметров решетки для талька, не содержащего фтора с экспериментальными данными [11] представлено в таблице 2.

Видно, что отличие наших теоретических значений постоянных решетки a, b и c от экспериментальных не превышает 0.68 %, 0.65 % и 2.24 %, соответственно. В тоже время наблюдается очень хорошее согласие для углов ячейки: значение угла α отличается от экспериментального на 0.20 %, для угла β это отличие составляет почти 0 %, а для γ всего лишь 0,01 %.

ВЛИЯНИЕ ПРИМЕСНЫХ АТОМОВ НА АТОМНУЮ И ЭЛЕКТРОННУЮ СТРУКТУРУ НАНОПОРИСТЫХ СИЛИКАТОВ

Рис. 3. Атомная структура талька

Рассчитанные параметры элементарной ячейки в сравнении с экспериментальными данными: a, b, c – постоянные ячейки; α, β, γ – углы ячейки; d – расстояние между слоями (d = c · sin β); V – объем ячейки; V_{Mg1}, V_{Mg2}, V_{Si1} и V_{Si2} – объемы октаэдров Mg1O₆, Mg2O₆, и тетраэдров Si1O₄, Si2O₄ соответ-ственно; Q_{Mg1}, Q_{Mg2}, Q_{Si1} и Q_{Si2} – квадратичные удлинения [5]. * - обозначены

значения полученные из экспериментальных данных координат.

			Таблица 2
Параметр	Без фтора		C homes
	Расчет	Эксперимент [11]	С фтором
a, Å	5.326	5.290 ± 0.003	5.321
b, Å	9.233	9.173 ± 0.005	9.227
c, Å	9.677	9.460 ± 0.005	9.801
α, °	90.64	90.46 ± 0.05	90.31
β, °	98.68	98.68 ± 0.05	98.36
γ, °	90.08	90.09 ± 0.05	90.01
d, Å	9.566	9.352	9.697
$V, Å^3$	470.384	453.774	476.040
d(O-H), Å	0.962	$0.850 \pm 0.020^{*}$	0.961
V_{Mg1} , Å ³	11.841	11.697*	11.844
V_{Mg2} , Å ³	11.818	11.687*	11.837
V_{Si1} , Å ³	2.251	2.194*	2.250
V_{Si2} , Å ³	2.250	2.191*	2.250
Q_{Mg1}	1.0098	1.0087^{*}	1.0101
Q_{Mg2}	1.0097	1.0086^{*}	1.0102
Q _{Si1}	1.0000	1.0000^{*}	1.0001
Q _{Si2}	1.0000	1.0000^{*}	1.0001

В работе Ларентзоса (Larentzos) [12] для параметров а и b получались значения более близкие к эксперименту [11], однако, постоянная с имела ВЕСТНИК ТОГУ. 2012. № 3 (26)

слишком заниженное значение, да и углы получались менее корректными. В нашей работе значения параметров а и с имеют вполне удовлетворительные значения, однако параметр с немного завышен. Значения расстояния между слоями $d = c \cdot sin \beta$ получилось более близкое к экспериментальному и отличается от него не более чем на 2.24 %.

Рис. 4. Полная плотность электронных состояний $Mg_3Si_4O_{10}(OH)_2$: а – тальк легированный фтором, b – чистый тальк, E_F – уровень Ферми

Согласно нашим данным рассчитанная ширина запрещенной зоны Eg для чистого, бездефектного талька составляет 5.26 eV. К сожалению, в литературе отсутствуют экспериментальные данные по величине ширины запрещенной зоны для кристаллов Mg₃Si₄O₁₀(OH)₂. Однако в работе [13] авторами показано подобие электронных структур кристаллов лизардита Mg₃Si₂O₅(OH)₄ и талька $Mg_3(Si_2O_5)_2(OH)_2$ в силу подобия их атомных структур. При этом в работе [14], ab initio методом в приближении B3LYP-функционала теоретически рассчитана ширина запрещенной зоны для лизардита, которая составила 6.40 эВ, что близко к нашему теоретическому значению Eg. В работе [15] были произведены расчеты полной плотности электронных состояний для кристалла лизардита. Полученные нами данные (рис. 4) хорошо согласуются с данными [15]. Действительно, как видно из рисунка 4 в валентной зоне наблюдаются два пика; один, вблизи уровня Ферми, шириной около 11 эВ и второй при более низких энергиях, шириной порядка 5 эВ. В зоне проводимости наблюдается пик шириной 6 эВ.

Проанализируем, как примесные атомы фтора влияют на атомную и электронную структуру Mg₃Si₄O₁₀(OH)₂. Для чего на месте одной удаленной OH группы помещался атом фтора. При этом количественное содержание фтора в решетке талька соответствует F/(F+OH)·100% = 12.5 ат.%. Как ясно из таблицы 2 внедрение ионов фтора в решетку приводит к увеличению объема элементарной ячейки, по сравнению с чистым тальком. При этом параметры а и b уменьшаются до 5.321 Å и 9.227 Å соответственно, а параметр с увели-

чивается до 9.801 Å. Данные результаты согласуются с результатами работ [16, 17]. Увеличение объема элементарной ячейки происходит в основном изза увеличения объемов V_{Mg1} и V_{Mg2} октаэдров Mg1O₆ и Mg2O₆. При этом объемы V_{Si1} и V_{Si2} тетраэдров Si1O₄ и Si2O₄ практически не изменяются. Как показывают параметры квадратичного удлинения Q (таблица 2), характеризующие искажение полиэдров в структуре, помимо роста объемов октаэдров Mg1O₆, Mg2O₆ увеличивается их искажение, в тоже время форма тетраэдров Si1O₄, Si2O₄ практически не изменяется. Межатомное расстояние OH-группы остается почти таким же. Атомы фтора образуют три связи Mg-F с ближайшими окружающими его тремя атомами магния; длины данных связей составляют d(Mg2-F) = 2.035 Å, a d(Mg1-F) = 2.028 Å, т.е. длина их уменьшается по сравнению с длинами d(Mg2-O2), d(Mg1-O2) соответственно для чистого талька.

Что касается электронной структуры талька, то поскольку OH-группа и атом фтора схожи и по размеру и заряду, то внедрение атома фтора в решетку Mg₃Si₄O₁₀(OH)₂ не приводит к сильному изменению полной плотности электронных состояний. Действительно, как видно из рисунка 4 лишь в области 25 эВ, в валентной зоне, возникает малый пик из-за структурных искажений в решетке. Ширина запрещенной зоны слегка уменьшается и составляет 5.20 эВ.

Заключение

Методом теории функционала электронной плотности и теории псевдопотенциалов изучено влияние примесных ионов железа и фтора на атомную и электронную структуру нанопористых силикатов.

Показано, что внедрение примесных ионов Fe в матрицу SiO₂ приводит к существенному уменьшению ширины запрещенной зоны нанокомпозита Fe/SiO₂. Энергетически наиболее выгодной позицией для иона Fe является положение (OH)–Fe–(OSi)₃.

Внедрение F в решетку $Mg_3Si_4O_{10}(OH)_2$ приводит к увеличению объема элементарной ячейки за счет увеличения объемов и искажения формы октаэдров $Mg1O_6$, $Mg2O_6$, при этом объемы и форма тетраэдров $Si1O_4$ и $Si2O_4$ практически не изменяются. Данное внедрение не приводит к сильному изменению полной плотности электронных состояний, а ширина запрещенной зоны слегка уменьшается от значения 5.26 до 5.20 эВ.

Благодарности

Работа поддержана грантами № 11-III-В-02-019 и № 12-III-В-02-015 президиума Дальневосточного отделения РАН. Работа выполнена на вычислительных кластерах ВЦ ДВО РАН (г. Хабаровск) и СКИФ МГУ «ЧЕБЫШЕВ» (г. Москва).

Чибисов А. Н., Чибисова М. А.

ВЕСТНИК ТОГУ. 2012. № 3 (26)

Библиографические ссылки

1. *Magnetic* properties of iron nanoparticles in mesoporous silica matrix / N. A. Grigorieva, S. V. Grigoriev, H. Eckerlebe, A. A. Eliseev, K. S. Napolskii, A. V. Lukashin, Yu. D. Tretyakov // Journal of Magnetism and Magnetic Materials. 2006. V. 300.

2. *Layered* Inorganic-Organic Talc-like Nanocomposites / Cesar R. Silva, Maria G. Fonseca, Jose S. Barone, Claudio Airoldi // Chem. Mater. 2002. V. 14.

3. *ABINIT*: First-principles approach to material and nanosystem properties / X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger // Comput. Phys. Comm. 2009. V. 180.

4. *Ab initio* pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory / M. Fuchs, M. Scheffler // Comp. Phys. Commun. 1999. V. 119.

5. *VESTA*: a three-dimensional visualization system for electronic and structural analysis / K. Momma, F. Izumi // J. Appl. Crystallogr. 2008. V. 41.

6. Моделирование атомной и электронной структуры мезопористого SiO₂, содержащего ионы Ti⁴⁺, Zr⁴⁺ / А.Н.Чибисов, М.А.Чибисова // Журнал технической физики. 2011. Т. 81. В. 4.

7. Olefin Adsorption on Silica-Supported Silver Salts – A DFT Study / D. Jiang, B.G. Sumpter, Sh. Dai // Langmuir. 2006. V. 22 (13).

8. *Characterization* and chemical modification of the silica surface / E.E. Vansant, Van der Voort R., K.C. Vrancken // Amsterdam: Elsevier. 1995.

9. Understanding the Vibrational and Electronic Features of Ti(IV) Sites in Mesoporous Silicas by Integrated Ab Initio and Spectroscopic Investigations / G. Tabacchi, E. Gianotti, E. Fois et al. // J. Phys. Chem. C. 2007. V. 111.

10. Special points for Brillouin-zone integrations / H.J. Monkhorst, J.D. Pack // Phys. Rev. B. 1976. V. 13.

11. Strukturverfeinerung am Talk $Mg_3Si_4O_{10}(OH)_2$ / B. Perdikatsis, H. Burzlaff // Zeitschrift für Kristallographie. 1981. Vol. 156.

12. *Ab Initio* and Classical Molecular Dynamics Investigation of the Structural and Vibrational Properties of Talc and Pyrophyllite / J.P. Larentzos, J.A. Greathouse, R.T. Cy-gan // J. Phys. Chem. C. 2007. V. 111.

13. *Orbital* interactions in phyllosilicates: perturbations of an idealized twodimensional, infinite silicate frame / W.F. Bleam, R. Hoffmann // Phys. Chem. Minerals. 1988. V. 15.

14. *Single-layered* chrysotile nanotubes: A quantum mechanical *ab initio* simulation / P. D'Arco, Y. Noel, R. Demichelis, R. Dovesi // J. Chem. Phys. 2009. V. 131.

15. *Ab Initio* 2-D periodic Hartree-Fock study of Fe-substituted lizardite 1T- a simplified cronstedtite model / E. Scholtzova, L. Smrcok, D. Tunega, L.T. Nagy // Phys. Chem. Minerals. 2000. V. 27.

16. *The* crystal chemistry and thermal stability of sol-gel prepared fluoride-substituted talc / A. Rywak, J. M. Burlitch // Phys. Chem. Minerals. 1996. V. 23.

17. Sol-gel synthesis of fluoride-substituted talc / F.D. Perez, J.M. Burlitch // Chem. Mater. 1995. V. 7.